Skip to main content

Advertisement

Log in

Enhanced photoelectrochemical properties of NiO nanoparticles-decorated TiO2 nanotube arrays for water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Vertically oriented titanium dioxide nanotube arrays (TNTAs) decorated with NiO nanoparticles (NPs) were successfully fabricated using two-step electrochemical anodization. An ultrasound-assisted deposition method was used to homogeneously loading the NiO NPs into the TNTAs, resulting in a NiO/TNTAs junction electrode. X-ray diffraction reveals that the TNTAs and NiO/TNTAs showed anatase structures. Also, SEM images confirm that the nanotubes have a nominal length of 3.57 µm and approximately equal wall thickness and diameters; 55.51 nm and 17.64 nm, respectively. The NiO/TNTAs junction electrode exhibited high visible light photo-response that enhances the photoelectrochemical activity. Accordingly, the incident photon-to-current conversion efficiency of NiO/TNTAs was estimated to be 86.89% in comparison to the pure TNTAs whose efficiency was equal to 29.62%. In conclusion, the NiO/TNTAs junction fabricated by a simple, cost-effective, and applicable cell is a promising clean renewable source for the water-splitting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Ge et al., A review of TiO2 nanostructured catalysts for sustainable H2 generation. Intl. J. Hydrogen Energy 42(12), 8418–8449 (2017)

    CAS  Google Scholar 

  2. E.P. Melián et al., Influence of nickel in the hydrogen production activity of TiO2. Appl. Catal. B 152, 192–201 (2014)

    Google Scholar 

  3. S. Shafiee, E. Topal, When will fossil fuel reserves be diminished? Energy Policy 37(1), 181–189 (2009)

    Google Scholar 

  4. A.M. Abdalla et al., Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Conv. Manage 165, 602–627 (2018)

    CAS  Google Scholar 

  5. Y. Miseki, K. Sayama, Photocatalytic water splitting for solar hydrogen production using the carbonate effect and the Z-scheme reaction. Adv. Energy Mater. 9(23), 1801294 (2019)

    Google Scholar 

  6. A. Landman et al., Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 16(6), 646 (2017)

    CAS  Google Scholar 

  7. R.M. Navarro et al., Hydrogen Production from Renewables. Encyclopedia of Inorganic Chemistry, 2006

  8. C. Acar, I. Dincer, Impact assessment and efficiency evaluation of hydrogen production methods. Intl. J. Energy Res. 39(13), 1757–1768 (2015)

    CAS  Google Scholar 

  9. A. Haryanto et al., Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19(5), 2098–2106 (2005)

    CAS  Google Scholar 

  10. E. Üzer et al., Vapor deposition of semiconducting phosphorus allotropes into TiO2 nanotube arrays for photoelectrocatalytic water splitting. ACS Appl. Nano Mater. 2(6), 3358–3367 (2019)

    Google Scholar 

  11. M. Wang, L. Chen, L. Sun, Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ. Sci. 5(5), 6763–6778 (2012)

    CAS  Google Scholar 

  12. D. Merki et al., Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2(7), 1262–1267 (2011)

    CAS  Google Scholar 

  13. X. Chen et al., Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010)

    CAS  Google Scholar 

  14. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    CAS  Google Scholar 

  15. C. Shifu et al., Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO2. J. Hazard. Mater. 155(1–2), 320–326 (2008)

    Google Scholar 

  16. R.A. Solano et al., Fe-TiO2 nanoparticles synthesized by green chemistry for potential application in waste water photocatalytic treatment. J. Nanotechnol. (2019). https://doi.org/10.1155/2019/4571848

    Article  Google Scholar 

  17. X. Kang et al., Titanium dioxide: from engineering to applications. Catalysts 9(2), 191 (2019)

    Google Scholar 

  18. M.E. Ali et al., Photoassisted mineralization of remazole red F3B over NiO/TiO2 and CdO/TiO2 nanoparticles under simulated sunlight. Sep. Sci. Technol. 53(1), 170–180 (2018)

    CAS  Google Scholar 

  19. M. Zhang et al., Enhanced H2 evolution of TiO2 with efficient multiple electrons transfer modified by tiny CuOx–NiO bimetallic oxides. Int. J. Hydrogen Energy 43(17), 8313–8322 (2018)

    CAS  Google Scholar 

  20. H. Gong, Q. Liu, C. Huang, NiSe as an effective co-catalyst coupled with TiO2 for enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 44(10), 4821–4831 (2019)

    CAS  Google Scholar 

  21. T. Li et al., Photoelectrochemical water splitting properties of Ti-Ni-Si-O nanostructures on Ti-Ni-Si alloy. Nanomaterials 7(11), 359 (2017)

    Google Scholar 

  22. H. Li et al., Constructing stable NiO/N-doped TiO2 nanotubes photocatalyst with enhanced visible-light photocatalytic activity. J. Mater. Sci.: Mater. Electron. 26(4), 2571–2578 (2015)

    CAS  Google Scholar 

  23. M. Lorenzetti et al., Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater. Sci. Eng. C 37, 390–398 (2014)

    CAS  Google Scholar 

  24. D. Ding, C. Ning, X. Wang, Reduced N/Ni-doped TiO2 nanotubes photoanodes for photoelectrochemical water splitting. RSC Adv. 5(116), 95478–95487 (2015)

    Google Scholar 

  25. M.M. Momeni, Y. Ghayeb, Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J. Appl. Electrochem. 45(6), 557–566 (2015)

    CAS  Google Scholar 

  26. Y. Li et al., Electrodeposition of Ni oxide on TiO2 nanotube arrays for enhancing visible light photoelectrochemical water splitting. J. Electroanal. Chem. 688, 228–231 (2013)

    CAS  Google Scholar 

  27. Z. Wu et al., An ultrasound-assisted deposition of NiO nanoparticles on TiO2 nanotube arrays for enhanced photocatalytic activity. J. Mater. Chem. A 2(22), 8223–8229 (2014)

    CAS  Google Scholar 

  28. J. Guo et al., A NiO/TiO2 junction electrode constructed using self-organized TiO2 nanotube arrays for highly efficient photoelectrocatalytic visible light activations. J. Phys. D: Appl. Phys. 43(24), 245202 (2010)

    Google Scholar 

  29. R. Vinoth et al., TiO2–NiO p–n nanocomposite with enhanced sonophotocatalytic activity under diffused sunlight. Ultrason. Sonochem. 35, 655–663 (2017)

    CAS  Google Scholar 

  30. N. Pishkar et al., Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization. Res. Phys. 9, 1246–1249 (2018)

    Google Scholar 

  31. A. Apolinario et al., The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: a detailed study of the growth mechanism. J. Mater. Chem. A 2(24), 9067–9078 (2014)

    CAS  Google Scholar 

  32. X. Wang, S. Zhang, L. Sun, A two-step anodization to grow high-aspect-ratio TiO2 nanotubes. Thin Solid Films 519(15), 4694–4698 (2011)

    CAS  Google Scholar 

  33. H. Zhang et al., Observation of defect state in highly ordered titanium dioxide nanotube arrays. Nanotechnology 25(27), 275603 (2014)

    Google Scholar 

  34. D. Fang et al., Fabrication and photoluminiscent properties of titanium oxide nanotube arrays. J. Braz. Chem. Soc. 19(6), 1059–1064 (2008)

    CAS  Google Scholar 

  35. M.L. Crespillo et al., Recent advances on carrier and exciton self-trapping in strontium titanate: understanding the luminescence emissions. Crystals 9(2), 95 (2019)

    CAS  Google Scholar 

  36. R. Dubey, Synthesis and characterization of titania nanotube arrays by electrochemical method for dye sensitized solar cells. Arch. Appl. Sci. Res. 5(5), 28–32 (2013)

    CAS  Google Scholar 

  37. Y.-H. Chang et al., The effect of geometric structure on photoluminescence characteristics of 1-D TiO2 nanotubes and 2-D TiO2 films fabricated by atomic layer deposition. J. Electrochem. Soc. 159(7), D401–D405 (2012)

    CAS  Google Scholar 

  38. D.K. Pallotti et al., Photoluminescence mechanisms in anatase and rutile TiO2. J. Phys. Chem. C 121(16), 9011–9021 (2017)

    CAS  Google Scholar 

  39. S.K. Mohapatra et al., Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2-x C x nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J. Phys. Chem. C 111(24), 8677–8685 (2007)

    CAS  Google Scholar 

  40. S. Pansri et al., Band offset determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV photodetectors. J. Mater. Sci. 55(10), 4332–4344 (2020)

    CAS  Google Scholar 

  41. N.K. Shrestha et al., Self-organized TiO2 nanotubes: visible light activation by Ni oxide nanoparticle decoration. Electrochem. Commun. 12(2), 254–257 (2010)

    CAS  Google Scholar 

  42. J. Joy, J. Mathew, S.C. George, Nanomaterials for photoelectrochemical water splitting: review. Intl. J. Hydrogen Energy 43(10), 4804–4817 (2018)

    CAS  Google Scholar 

  43. N. Mohaghegh, M. Faraji, A. Abedini, Fabrication of electrochemically nonporous NiO–ZnO/TiO2 nanotubes/Ti plates for photocatalytic disinfection of microbiological pollutants. J. Iran. Chem. Soc. 16(6), 1207–1215 (2019)

    CAS  Google Scholar 

  44. H. Li et al., State-of‐the‐art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Func. Mater. 25(7), 998–1013 (2015)

    CAS  Google Scholar 

  45. M. Wang et al., TiO2/NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light. J. Mater. Chem. A 3(41), 20727–20735 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out at the laboratories of the Department of Physics, College of Science, Mustansiriyah University, Baghdad - Iraq. Accordingly, the authors express their gratitude due to the supports of this department. Additionally, the authors would like to acknowledge the consultation of Dr. Mustafa Shakir Hashim at the Department of Physics, College of Education, Mustansiriyah University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad H. Hussein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasim, M.M., Dakhil, O.A.A., Hussein, E.H. et al. Enhanced photoelectrochemical properties of NiO nanoparticles-decorated TiO2 nanotube arrays for water splitting. J Mater Sci: Mater Electron 31, 10707–10714 (2020). https://doi.org/10.1007/s10854-020-03620-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03620-3

Navigation