Skip to main content
Log in

Novel Mn–Cu-Containing CeO2 Nanopolyhedra for the Oxidation of CO and Diesel Soot (Part II): Effect of Oxygen Concentration on the Catalytic Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, ceria-based nanocatalysts mixed with copper and manganese were studied. All the catalysts were synthesized via the hydrothermal procedure. Four samples were prepared here denoted through the atomic ratios of the metals in the mixed oxide: Ce0.95Mn0.05, Ce0.95Cu0.05, Ce0.95Mn0.025Cu0.025 and CeO2. The samples were tested for the CO and soot oxidation reactions with different gas-phase oxygen concentrations (10, 1.0, 0.5 and 0.02 vol% O2). As a whole, the most promising catalysts for the CO oxidation reaction are the Ce0.95Cu0.05 and Ce0.95Mn0.025Cu0.025 samples. Indeed, the presence of Cu species in the solid enhances the surface redox mechanism for the CO oxidation. High vol% O2 values lead to competitive CO and O2 adsorption on the catalyst surface thus reducing the catalytic performances for binary and ternary oxides. On the other hand, the CO oxidation reaction over the CeO2 catalyst appears favored with 10 vol% O2. For the soot oxidation reaction, the most active catalyst (in terms of soot conversion %) is the CeO2 sample likely due to the unique feature of presenting well-defined and highly reactive nanocubic structures. Moreover, the presence of 10 vol% O2 in the mixture appears to be the best condition to oxidize the soot particles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jost K (2002) Spark ignition engine trends. Automotive Engineering

  2. Nagai K, Seko T (2000) Trends of motor fuel quality in Japan. JSAE Rev 21:457–462. https://doi.org/10.1016/S0389-4304(00)00070-9

    Article  CAS  Google Scholar 

  3. Sakaguchi T (2000) Influence of diffusion of fuel-efficient motor vehicles on gasoline demand for individual user owned passenger cars. Energy Policy 28:895–903. https://doi.org/10.1016/S0301-4215(00)00071-9

    Article  Google Scholar 

  4. Batmaz I, Balc M, Salman S, Erdiller B (1997) Experimental analysis of fuel economy and exhaust emissions at petrol engine vehicles. In: First Automotive Technology Congress with International Participation. Adana, Turkey, pp 95–103

  5. Korkmaz I (1996) A study on the performance and emission characteristics of gasoline and methanol fuelled spark-ignition engines. Istanbul Technical University, Turkey

    Google Scholar 

  6. Bayraktar H (1997) Theoretical investigation of the effect of gasoline-ethanol blends on spark-ignition engine combustion and cycles. Karadeniz Technical University, Turkey

    Google Scholar 

  7. Heywood JB (1988) Internal combustion engine fundamentals. Mcgraw-hill, New York

    Google Scholar 

  8. Mogi K (1998) Analysis and avoidance of pre-ignition in S.I. gasoline engines. JSAE Rev 19:9–14. https://doi.org/10.1016/S0389-4304(97)00045-3

    Article  Google Scholar 

  9. Lox ESJ, Engler BH, Frennet A, Bastin JM (1999) Environmental catalysis–mobile sources. In: Ertl G, Knozinger H, Weitkamp J (eds) Environmental catalysis, Wiley, Weinheim, pp 1–117

    Google Scholar 

  10. Moldovan M, Palacios MA, Gómez MM et al (2002) Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters. Sci Total Environ 296:199–208. https://doi.org/10.1016/S0048-9697(02)00087-6

    Article  CAS  PubMed  Google Scholar 

  11. Neeft JPA, Van Pruissen OP, Makkee M, Moulijn JA (1997) Catalysts for the oxidation of soot from diesel exhaust gases. II. Contact between soot and catalyst under practical conditions. Appl Catal B Environ 12:21–31. https://doi.org/10.1016/S0926-3373(96)00060-4

    Article  CAS  Google Scholar 

  12. Govinda Rao B, Jampaiah D, Venkataswamy P, Reddy BM (2016) Enhanced catalytic performance of manganese and cobalt Co-doped CeO2 catalysts for diesel soot oxidation. Chem Sel 1:6681–6691. https://doi.org/10.1002/slct.201601297

    Article  CAS  Google Scholar 

  13. Sudarsanam P, Hillary B, Mallesham B et al (2016) Designing CuOx nanoparticle-decorated CeO2 nanocubes for catalytic soot oxidation: role of the nanointerface in the catalytic performance of heterostructured nanomaterials. Langmuir 32:2208–2215. https://doi.org/10.1021/acs.langmuir.5b04590

    Article  CAS  PubMed  Google Scholar 

  14. Piumetti M, Bensaid S, Russo N, Fino D (2015) Nanostructured ceria-based catalysts for soot combustion: investigations on the surface sensitivity. Appl Catal B Environ 165:742–751. https://doi.org/10.1016/j.apcatb.2014.10.062

    Article  CAS  Google Scholar 

  15. Fino D, Bensaid S, Piumetti M, Russo N (2016) A review on the catalytic combustion of soot in diesel particulate filters for automotive applications: from powder catalysts to structured reactors. Appl Catal A Gen 509:75–96

    Article  CAS  Google Scholar 

  16. Andana T, Piumetti M, Bensaid S et al (2016) CO and soot oxidation over Ce–Zr–Pr oxide catalysts. Nanoscale Res Lett 11:278. https://doi.org/10.1186/s11671-016-1494-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neeft J, Makkee M, Moulijn J (1996) Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study. Appl Catal B Environ 8:57. https://doi.org/10.1016/0926-3373(95)00057-7

    Article  CAS  Google Scholar 

  18. Pérez VR, Bueno-López A (2015) Catalytic regeneration of diesel particulate filters: comparison of Pt and CePr active phases. Chem Eng J 279:79–85. https://doi.org/10.1016/j.cej.2015.05.004

    Article  CAS  Google Scholar 

  19. Piumetti M, Andana T, Bensaid S et al (2017) Ceria-based nanomaterials as catalysts for CO oxidation and soot combustion: effect of Zr-Pr doping and structural properties on the catalytic activity. AIChE J 63:216–225. https://doi.org/10.1002/aic.15548

    Article  CAS  Google Scholar 

  20. Piumetti M, Bensaid S, Fino D, Russo N (2015) Catalysis in diesel engine NO x aftertreatment: a review. Catal Struct React 1:155–173. https://doi.org/10.1080/2055074X.2015.1105615

    Article  Google Scholar 

  21. Andana T, Piumetti M, Bensaid S et al (2017) Ceria-supported small Pt and Pt3Sn nanoparticles for NOx-assisted soot oxidation. Appl Catal B Environ 209:295–310. https://doi.org/10.1016/j.apcatb.2017.03.010

    Article  CAS  Google Scholar 

  22. Setiabudi A, Chen J, Mul G et al (2004) CeO2 catalysed soot oxidation: the role of active oxygen to accelerate the oxidation conversion. Appl Catal B Environ 51:9–19. https://doi.org/10.1016/J.APCATB.2004.01.005

    Article  CAS  Google Scholar 

  23. Arena F, Di Chio R, Fazio B et al (2017) Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation: part I. Influence of cerium addition on structure and CO oxidation activity. Appl Catal B Environ 210:14–22. https://doi.org/10.1016/j.apcatb.2017.03.049

    Article  CAS  Google Scholar 

  24. Bueno-López A (2014) Diesel soot combustion ceria catalysts. Appl Catal B Environ 146:1–11. https://doi.org/10.1016/j.apcatb.2013.02.033

    Article  CAS  Google Scholar 

  25. Aneggi E, Wiater D, De Leitenburg C et al (2014) Shape-dependent activity of ceria in soot combustion. ACS Catal 4:172–181. https://doi.org/10.1021/cs400850r

    Article  CAS  Google Scholar 

  26. Aneggi E, Llorca J, Boaro M, Trovarelli A (2005) Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders. J Catal 234:88–95. https://doi.org/10.1016/j.jcat.2005.06.008

    Article  CAS  Google Scholar 

  27. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520. https://doi.org/10.1080/01614949608006464

    Article  CAS  Google Scholar 

  28. Di Sarli V, Landi G, Lisi L, Di Benedetto A (2017) Ceria-coated diesel particulate filters for continuous regeneration. AIChE J 63:3442–3449. https://doi.org/10.1002/aic.15688

    Article  CAS  Google Scholar 

  29. Gupta A, Waghmare UV, Hegde MS (2010) Correlation of oxygen storage capacity and structural distortion in transition-metal-, noble-metal-, and rare-earth-ion-substituted CeO2 from first principles calculation. Chem Mater 22:5184–5198. https://doi.org/10.1021/cm101145d

    Article  CAS  Google Scholar 

  30. Doornkamp C, Ponec V (2000) The universal character of the Mars and Van Krevelen mechanism. J Mol Catal A Chem 162:19–32. https://doi.org/10.1016/S1381-1169(00)00319-8

    Article  CAS  Google Scholar 

  31. Piumetti M, Bensaid S, Andana T et al (2017) Nanostructured ceria-based materials: effect of the hydrothermal synthesis conditions on the structural properties and catalytic activity. Catalysts 7:174. https://doi.org/10.3390/catal7060174

    Article  CAS  Google Scholar 

  32. Mai HX, Sun LD, Zhang YW et al (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109:24380–24385. https://doi.org/10.1021/jp055584b

    Article  CAS  PubMed  Google Scholar 

  33. Yang Z, Zhou K, Liu X et al (2007) Single-crystalline ceria nanocubes: size-controlled synthesis, characterization and redox property. Nanotechnology 18:185606. https://doi.org/10.1088/0957-4484/18/18/185606

    Article  CAS  Google Scholar 

  34. Dosa M, Piumetti M, Bensaid S et al (2017) Novel Mn–Cu-containing CeO2 nanopolyhedra for the oxidation of CO and diesel soot: effect of dopants on the nanostructure and catalytic activity. Catal Lett 1–14. https://doi.org/10.1007/s10562-017-2226-y

    Article  Google Scholar 

  35. Venkataswamy P, Jampaiah D, Mukherjee D et al (2016) Mn-doped ceria solid solutions for CO oxidation at lower temperatures. Catal Lett 146:2105–2118. https://doi.org/10.1007/s10562-016-1811-9

    Article  CAS  Google Scholar 

  36. Andana T, Piumetti M, Bensaid S et al (2016) Nanostructured ceria-praseodymia catalysts for diesel soot combustion. Appl Catal B Environ 197:125–137. https://doi.org/10.1016/j.apcatb.2015.12.030

    Article  CAS  Google Scholar 

  37. Piumetti M, Andana T, Bensaid S et al (2016) Study on the CO oxidation over ceria-based nanocatalysts. Nanoscale Res Lett 11:165. https://doi.org/10.1186/s11671-016-1375-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jansson J (2000) Low-temperature CO oxidation over Co3O4/Al2O3. J Catal 194:55–60. https://doi.org/10.1006/jcat.2000.2924

    Article  CAS  Google Scholar 

  39. Royer S, Duprez D (2011) Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 3:24–65. https://doi.org/10.1002/cctc.201000378

    Article  CAS  Google Scholar 

  40. Freund HJ, Meijer G, Scheffler M et al (2011) CO oxidation as a prototypical reaction for heterogeneous processes. Angew Chemie—Int Ed 50:10064–10094

    Article  CAS  Google Scholar 

  41. Engel T, Ertl G (1978) A molecular beam investigation of the catalytic oxidation of CO on Pd(111). J Chem Phys 69:1267. https://doi.org/10.1063/1.436666

    Article  CAS  Google Scholar 

  42. Akhter S, White JM (1986) The effect of oxygen islanding on Co and H2 oxidation on Pt(111). Surf Sci 171:527–542. https://doi.org/10.1016/0039-6028(86)91058-7

    Article  CAS  Google Scholar 

  43. Libuda J, Meusel I, Hoffmann J et al (2001) The CO oxidation kinetics on supported Pd model catalysts: a molecular beam/in situ time-resolved infrared reflection absorption spectroscopy study. J Chem Phys 114:4669–4684. https://doi.org/10.1063/1.1342240

    Article  CAS  Google Scholar 

  44. Conner WC, Falconer JL (2002) Spillover in heterogeneous catalysis spillover in heterogeneous catalysis. Society 95:759–788. https://doi.org/10.1021/cr00035a014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Piumetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dosa, M., Piumetti, M., Bensaid, S. et al. Novel Mn–Cu-Containing CeO2 Nanopolyhedra for the Oxidation of CO and Diesel Soot (Part II): Effect of Oxygen Concentration on the Catalytic Activity. Catal Lett 149, 107–118 (2019). https://doi.org/10.1007/s10562-018-2591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2591-1

Keywords

Navigation