Skip to main content
Log in

Novel Mn–Cu-Containing CeO2 Nanopolyhedra for the Oxidation of CO and Diesel Soot: Effect of Dopants on the Nanostructure and Catalytic Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ceria-based catalysts doped with manganese and copper were obtained via the hydrothermal synthesis. Four systems were synthesized: CeO2 (pure ceria), Ce0.95Mn0.05 (Mn/Ce at. ratio = 1/19), Ce0.95Cu0.05 (Cu/Ce at. ratio = 1/19) and Ce0.95Mn0.025Cu0.025 (Mn/Cu/Ce at. ratio = 1/1/38). The catalytic activity of the prepared materials was tested for the CO and soot oxidations. Complementary techniques (XRD, N2 physisorption at − 196 °C, FESEM, XPS, Raman spectroscopy, CO-TPR and Soot-TPR) were performed to investigate their physico-chemical properties. The samples were characterized by nanocubes, in the case of CeO2, and by nanopolyhedra for binary (Ce0.95Mn0.05 and Ce0.95Cu0.05) and ternary oxides (Ce0.95Mn0.025Cu0.025). The CO-TPR analysis has confirmed that the reducibility follows the order: CeO2 < Ce0.95Mn0.05 < Ce0.95Mn0.025Cu0.025 < Ce0.95Cu0.05. A similar trend appears for the surface defective sites (Raman spectroscopy). These findings suggest the beneficial role of dopants in improving the structural defects and the surface reducibility of ceria. Both properties promote the CO oxidation activity. In fact, the Ce0.95Cu0.05 was the most effective catalyst for the CO oxidation. The Ce0.95Mn0.05 sample exhibited the best performance in soot oxidation. The following order was achieved: Ce0.95Mn0.025Cu0.025 < Ce0.95Cu0.05 < CeO2 ≈ Ce0.95Mn0.05, in agreement with the reduction profiles obtained by the Soot-TPR above 400 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andana T, Piumetti M, Bensaid S, Veyre L, Thieuleux C, Russo N, Fino D, Quadrelli EA, Pirone R (2017) Ceria-supported small Pt and Pt 3 Sn nanoparticles for NOx-assisted soot oxidation. Appl Catal B 209:295–310. doi:10.1016/j.apcatb.2017.03.010

    Article  CAS  Google Scholar 

  2. Piumetti M, Bensaid S, Russo N, Fino D (2015) Nanostructured ceria-based catalysts for soot combustion: Investigations on the surface sensitivity. Appl Catal B 165:742–751. doi:10.1016/j.apcatb.2014.10.062

    Article  CAS  Google Scholar 

  3. Setiabudi A, Chen J, Mul G, Makkee M, Moulijn JA (2004) CeO2 catalysed soot oxidation: The role of active oxygen to accelerate the oxidation conversion. Appl Catal B 51:9–19. doi:10.1016/j.apcatb.2004.01.005

    Article  CAS  Google Scholar 

  4. Bueno-López A (2014) Diesel soot combustion ceria catalysts. Appl Catal B 146:1–11. doi:10.1016/j.apcatb.2013.02.033

    Article  Google Scholar 

  5. Arena F, Di Chio R, Fazio B, Espro C, Spiccia L, Palella A, Spadaro L (2017) Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation: part I. Influence of cerium addition on structure and CO oxidation activity. Appl Catal B 210:14–22. doi:10.1016/j.apcatb.2017.03.049

    Article  CAS  Google Scholar 

  6. Aneggi E, Llorca J, Boaro M, Trovarelli A (2005) Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders. J Catal 234:88–95. doi:10.1016/j.jcat.2005.06.008

    Article  CAS  Google Scholar 

  7. Aneggi E, Wiater D, de Leitenburg C, Llorca J, Trovarelli A (2014) Shape-dependent activity of ceria in soot combustion. ACS Catal 4:172–181. doi:10.1021/cs400850r

    Article  CAS  Google Scholar 

  8. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520. doi:10.1080/01614949608006464

    Article  CAS  Google Scholar 

  9. Di Monte R, Kašpar J (2004) On the role of oxygen storage in three-way catalysis. Top Catal 28:47–57. doi:10.1023/B:TOCA.0000024333.08447.f7

    Article  CAS  Google Scholar 

  10. Doornkamp C, Ponec V (2000) The universal character of the Mars and Van Krevelen mechanism. J Mol Catal A 162:19–32. doi:10.1016/S1381-1169(00)00319-8

    Article  CAS  Google Scholar 

  11. Gupta A, Waghmare UV, Hegde MS (2010) Correlation of oxygen storage capacity and structural distortion in transition-metal-, noble-metal-, and rare-earth-ion-substituted CeO2 from first principles calculation. Chem Mater 22:5184–5198. doi:10.1021/cm101145d

    Article  CAS  Google Scholar 

  12. Yuan Q, Duan H-H, Li L-L, Sun L-D, Zhang Y-W, Yan C-H (2009) Controlled synthesis and assembly of ceria-based nanomaterials. J Colloid Interface Sci 335:151–167. doi:10.1016/j.jcis.2009.04.007

    Article  CAS  Google Scholar 

  13. Vilé G, Colussi S, Krumeich F, Trovarelli A, Pérez-Ramírez J (2014) Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angew Chem Int Ed 53:12069–12072. doi:10.1002/anie.201406637

    Article  Google Scholar 

  14. He H, Yang P, Li J, Shi R, Chen L, Zhang A, Zhu Y (2016) Controllable synthesis, characterization, and CO oxidation activity of CeO2 nanostructures with various morphologies. Ceram Int 42:7810–7818. doi:10.1016/j.ceramint.2016.02.005

    Article  CAS  Google Scholar 

  15. Yang Z, Zhou K, Liu X, Tian Q, Lu D, Yang S (2007) Single-crystalline ceria nanocubes: size-controlled synthesis, characterization and redox property. Nanotechnology 18:185606. doi:10.1088/0957-4484/18/18/185606

    Article  Google Scholar 

  16. Mai H-X, Sun L-D, Zhang Y-W, Si R, Feng W, Zhang H-P, Liu H.-C.L. Yan C-H (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B. doi:10.1021/JP055584B

    Google Scholar 

  17. Piumetti M, Andana T, Bensaid S, Russo N, Fino D, Pirone R (2016) Study on the CO oxidation over ceria-based nanocatalysts. Nanoscale Res Lett 11:165. doi:10.1186/s11671-016-1375-z

    Article  Google Scholar 

  18. Andana T, Piumetti M, Bensaid S, Russo N, Fino D, Pirone R (2016) Nanostructured ceria-praseodymia catalysts for diesel soot combustion. Appl Catal B 197:125–137. doi:10.1016/j.apcatb.2015.12.030

    Article  CAS  Google Scholar 

  19. Sayle T.X.T. Cantoni M, Bhatta UM, Parker SC, Hall SR, Möbus G, Molinari M, Reid D, Seal S, Sayle DC (2012) Strain and architecture-tuned reactivity in ceria nanostructures; enhanced catalytic oxidation of CO to CO2. Chem Mater 24:1811–1821. doi:10.1021/cm3003436

    Article  CAS  Google Scholar 

  20. Nolan M, Parker SC, Watson GW (2005) The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf Sci 595:223–232. doi:10.1016/j.susc.2005.08.015

    Article  CAS  Google Scholar 

  21. Piumetti M, Bensaid S, Russo N, Fino D (2016) Investigations into nanostructured ceria–zirconia catalysts for soot combustion. Appl Catal B 180:271–282. doi:10.1016/j.apcatb.2015.06.018

    Article  CAS  Google Scholar 

  22. Krishna K, Bueno-López A, Makkee M, Moulijn JA (2007) Potential rare-earth modified CeO2 catalysts for soot oxidation: Part III. Effect of dopant loading and calcination temperature on catalytic activity with O2 and NO + O2. Appl Catal B 75:210–220. doi:10.1016/j.apcatb.2007.04.009

    Article  CAS  Google Scholar 

  23. Rao KN, Venkataswamy P, Reddy BM (2011) Structural characterization and catalytic evaluation of supported copper–ceria catalysts for soot oxidation. Ind Eng Chem Res 50:11960–11969. doi:10.1021/ie201474p

    Article  CAS  Google Scholar 

  24. Konsolakis M (2016) The role of copper–ceria interactions in catalysis science: recent theoretical and experimental advances. Appl Catal B 198:49–66. doi:10.1016/j.apcatb.2016.05.037

    Article  CAS  Google Scholar 

  25. Atribak I, López-Suárez FE, Bueno-López A, García-García A (2011) New insights into the performance of ceria-zirconia mixed oxides as soot combustion catalysts. Identification of the role of “active oxygen” production. Catal Today 176:404–408. doi:10.1016/j.cattod.2010.11.023

    Article  CAS  Google Scholar 

  26. Piumetti M, Bensaid S, Andana T, Russo N, Pirone R, Fino D (2017) Cerium-copper oxides prepared by solution combustion synthesis for total oxidation reactions: from powder catalysts to structured reactors. Appl Catal B 205:455–468. doi:10.1016/j.apcatb.2016.12.054

    Article  CAS  Google Scholar 

  27. Zheng X, Zhang X, Wang X, Wang S, Wu S (2005) Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation. Appl Catal A 295:142–149. doi:10.1016/j.apcata.2005.07.048

    Article  CAS  Google Scholar 

  28. Liu W, Flytzani-Stephanopoulos M (1995) Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity. J Catal 153:304–316. doi:10.1006/jcat.1995.1132

    Article  CAS  Google Scholar 

  29. Sudarsanam P, Hillary B, Mallesham B, Rao BG, Amin MH, Nafady A, Alsalme AM, Reddy BM, Bhargava SK (2016) Designing CuOx nanoparticle-decorated CeO2 nanocubes for catalytic soot oxidation : role of the nanointerface in the catalytic performance of heterostructured nanomaterials. Langmuir. doi:10.1021/acs.langmuir.5b04590

    Google Scholar 

  30. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2005) CuO/CeO2 catalysts: redox features and catalytic behaviors. Appl Catal A Gen 288:116–125. doi:10.1016/j.apcata.2005.04.024

    Article  CAS  Google Scholar 

  31. Konsolakis M (2015) Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: catalytic performance, mechanistic considerations, and surface chemistry aspects. ACS Catal 5:6397–6421. doi:10.1021/acscatal.5b01605

    Article  CAS  Google Scholar 

  32. Venkataswamy P, Rao KN, Jampaiah D, Reddy BM (2015) Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures. Appl Catal B 162:122–132. doi:10.1016/j.apcatb.2014.06.038

    Article  CAS  Google Scholar 

  33. Liang Y, Huang Y, Zhang H, Lan L, Zhao M, Gong M, Chen Y, Wang J (2017) Interactional effect of cerium and manganese on NO catalytic oxidation. Environ Sci Pollut Res 9314–9324. doi:10.1007/s11356-017-8645-x

  34. Tikhomirov K, Kröcher O, Elsener M, Wokaun A (2006) MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot. Appl Catal B 64:72–78. doi:10.1016/j.apcatb.2005.11.003

    Article  CAS  Google Scholar 

  35. Rani R, Prasad R (2014) Studies of carbon monoxide oxidation at ambient conditions. Recent Res Sci Technol 6:89–92

    CAS  Google Scholar 

  36. Lu H, Kong X, Huang H, Zhou Y, Chen Y (2015) Cu–Mn–Ce ternary mixed-oxide catalysts for catalytic combustion of toluene. J Environ Sci 32:102–107. doi:10.1016/j.jes.2014.11.015

    Article  Google Scholar 

  37. Zhao F, Gong M, Zhang G, Li J (2015) Effect of the loading content of CuO on the activity and structure of CuO/Ce-Mn-O catalysts for CO oxidation. J Rare Earths 33:604–610. doi:10.1016/S1002-0721(14)60460-9

    Article  CAS  Google Scholar 

  38. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  39. Konsolakis M, Carabineiro SAC, Marnellos GE, Asad MF, Soares OSGP, Pereira MFR, Órfão JJM, Figueiredo JL (2017) Volatile organic compounds abatement over copper-based catalysts: Effect of support. Inorg Chim Acta 455:473–482. doi:10.1016/j.ica.2016.07.059

    Article  CAS  Google Scholar 

  40. Andana T, Piumetti M, Bensaid S, Russo N, Fino D, Pirone R (2016) CO and soot oxidation over Ce-Zr-Pr oxide catalysts. Nanoscale Res Lett 11:278. doi:10.1186/s11671-016-1494-6

    Article  Google Scholar 

  41. Soler L, Casanovas A, Escudero C, Pérez-Dieste V, Aneggi E, Trovarelli A, Llorca J (2016) Ambient pressure photoemission spectroscopy reveals the mechanism of carbon soot oxidation in ceria-based catalysts. ChemCatChem 8:2748–2751. doi:10.1002/cctc.201600615

    Article  CAS  Google Scholar 

  42. Piumetti M, Andana T, Bensaid S, Fino D, Russo N, Pirone R (2016) Ceria-based nanomaterials as catalysts for CO oxidation and soot combustion: Effect of Zr-Pr doping and structural properties on the catalytic activity. AIChE J. doi:10.1002/aic.15548

    Google Scholar 

  43. Chen H-T, Chang J-G, Chen H-L, Ju S-P (2009) Identifying the O2 diffusion and reduction mechanisms on CeO2 electrolyte in solid oxide fuel cells: A DFT + U study. J Comput Chem 30:2433–2442. doi:10.1002/jcc.21247

    Article  CAS  Google Scholar 

  44. Choi YM, Abernathy H, Chen H-T, Lin MC, Liu M (2006) Characterization of O2–CeO2 interactions using in situ Raman spectroscopy and first-principle calculations. ChemPhysChem 7:1957–1963. doi:10.1002/cphc.200600190

    Article  CAS  Google Scholar 

  45. Amadine O, Essamlali Y, Fihri A, Larzek M, Zahouily M (2017) Effect of calcination temperature on the structure and catalytic performance of copper–ceria mixed oxide catalysts in phenol hydroxylation. RSC Adv 7:12586–12597. doi:10.1039/C7RA00734E

    Article  CAS  Google Scholar 

  46. Yang C, Yu X, Heißler S, Nefedov A, Colussi S, Llorca J, Trovarelli A, Wang Y, Wöll C (2017) Surface faceting and reconstruction of ceria nanoparticles. Angew Chemie Int Ed 56:375–379. doi:10.1002/anie.201609179

    Article  CAS  Google Scholar 

  47. Chen S, Li L, Hu W, Huang X, Li Q, Xu Y, Zuo Y, Li G (2015) Anchoring high-concentration oxygen vacancies at interfaces of CeO2-x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl Mater Interfaces 7:22999–23007. doi:10.1021/acsami.5b06302

    Article  CAS  Google Scholar 

  48. Paunović N, Dohčević-Mitrović Z, Scurtu R, Aškrabić S, Prekajski M, Matović B, Popović ZV (2012) Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals. Nanoscale 4:5469. doi:10.1039/c2nr30799e

    Article  Google Scholar 

  49. Filtschew A, Hofmann K, Hess C (2016) Ceria and its defect structure: new insights from a combined spectroscopic approach. J Phys Chem C 120:6694–6703. doi:10.1021/acs.jpcc.6b00959

    Article  CAS  Google Scholar 

  50. Spanier JE, Robinson RD, Zhang F, Chan S-W, Herman IP (2001) Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering. Phys Rev B 64:245407. doi:10.1103/PhysRevB.64.245407

    Article  Google Scholar 

  51. Wu Z, Li M, Howe J, Meyer HM III, Overbury SH (2010) Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 26:16595–16606. doi:10.1021/la101723w

    Article  CAS  Google Scholar 

  52. Agarwal S, Zhu X, Hensen EJM, Lefferts L, Mojet BL (2014) Defect chemistry of ceria nanorods. J Phys Chem C 118:4131–4142. doi:10.1021/jp409989y

    Article  CAS  Google Scholar 

  53. Dohcevic-Mitrovic ZD, Grujic-Drojcin M, Scepanovic M, Popovic ZV, Boskovic S, Matovic B, Zinkevich M, Aldinger F (2006) Ce1–xY(Nd)xO2–δ nanopowders: potential materials for intermediate temperature solid oxide fuel cells. J Phys Condens Matter 18:S2061–S2068. doi:10.1088/0953-8984/18/33/S22

    Article  CAS  Google Scholar 

  54. Nakajima A, Yoshihara A, Ishigame M (1994) Defect-induced Raman spectra in doped CeO2. Phys Rev B 50:13297–13307. doi:10.1103/PhysRevB.50.13297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Piumetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dosa, M., Piumetti, M., Bensaid, S. et al. Novel Mn–Cu-Containing CeO2 Nanopolyhedra for the Oxidation of CO and Diesel Soot: Effect of Dopants on the Nanostructure and Catalytic Activity. Catal Lett 148, 298–311 (2018). https://doi.org/10.1007/s10562-017-2226-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2226-y

Keywords

Navigation