Skip to main content
Log in

Electrospun CuS/ZnS–PAN Hybrids as Efficient Visible-Light Photocatalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Advanced hybrid fibrous materials based on polyacrylonitrile (PAN) and CuS/ZnS core/shell nanocrystals (NCs) were successfully prepared as efficient visible-light photocatalysts. The first step in the development of these novel hybrids was the synthesis of CuS/ZnS core/shell NCs with high photocatalytic activity under visible light irradiation. Further, CuS/ZnS–in–PAN hybrids were fabricated by electrospinning of PAN and CuS/ZnS NCs mixture, resulted in the distribution of NCs mainly into the PAN fibers. Purposefully, by simultaneous electrospinning of PAN solution and electrospraying of CuS/ZnS NCs dispersion, CuS/ZnS–on–PAN hybrids were obtained, as well. Thus, in one-step, NCs were selectively deposited “in” the PAN fibers or “on” the surface along the length of PAN fibers. The morphology of the hybrid materials was observed by scanning electron microscopy, while the distribution and crystallinity of the CuS/ZnS NCs were determined by high-resolution transmission electron microscope equipped with the selected area electron diffraction. The prepared CuS/ZnS–in–PAN and CuS/ZnS–on–PAN hybrids exhibit excellent photocatalytic activity even after threefold use in degradation of Rhodamine B under visible-light irradiation. Thus, the electrospun fibrous hybrids are very promising for design of a visible-light photoreactors for waste water treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nguyen VH, Nguyen BH (2012) Adv Nat Sci 3:023001

    Google Scholar 

  2. Tran HTT, Tran TKC, Nguyen DD, Kosslick H, Nguyen LQ (2018) Nanomaterials 8:276

    Article  Google Scholar 

  3. Tran HTT, Kosslick H, Ibad MF, Fischer C, Bentrup U, Vuong TH, Nguyen LQ, Schulz A (2017) Appl Catal B 200:647–658

    Article  CAS  Google Scholar 

  4. Lai Y, Huang J, Cui Z, Ge M, Zhang KQ, Chen Z, Chi L (2016) Small 12:2203–2224

    Article  CAS  PubMed  Google Scholar 

  5. Xu X, Bullock J, Schelhas LT, Stutz EZ, Fonseca JJ, Hettick M, Pool VL, Tai KF, Toney MF, Fang X, Javey A, Wong LH, Ager JW (2016) Nano Lett 16:1925–1932

    Article  CAS  PubMed  Google Scholar 

  6. Thuy UTD, Liem NQ, Parlett CMA, Lalev GM, Wilson K (2014) Catal Commun 44:62–67

    Article  CAS  Google Scholar 

  7. Shao Y, Wang L, Huang J (2016) RSC Adv 6:84493–84499

    Article  CAS  Google Scholar 

  8. Wang X, Fang Z, Lin X (2009) J Nanopart Res 11:731–736

    Article  CAS  Google Scholar 

  9. Stam W, Berends AC, Donega CM (2016) Chem Phys Chem 17:559–581

    Article  CAS  PubMed  Google Scholar 

  10. Guan J, Peng J, Jin X (2015) Anal Methods 7:5454–5461

    Article  CAS  Google Scholar 

  11. Goel S, Chen F, Cai W (2014) Small 10:631–645

    Article  CAS  PubMed  Google Scholar 

  12. Ma G, Zhou Y, Li X, Sun K, Liu S, Hu J, Kotov NA (2013) ACS Nano 7:9010–9018

    Article  CAS  PubMed  Google Scholar 

  13. Panigrahia S, Basak D (2012) RSC Adv 2:11963–11968

    Article  CAS  Google Scholar 

  14. Khanchandani S, Kumar S, Ganguli AK (2016) ACS Sustain Chem Eng 4:1487–1499

    Article  CAS  Google Scholar 

  15. Sunga YM, Noha K, Kwaka WC, Kim TG (2012) Sens Actuators B 161:453–459

    Article  CAS  Google Scholar 

  16. Greiner A, Wendorff J (2007) Angew Chem Int Ed 46:5670–5703

    Article  CAS  Google Scholar 

  17. Su Z, Li H, Chen P, Hu S, Yan Y (2017) Catal Sci Technol 7:5105–5112

    Article  CAS  Google Scholar 

  18. Su C, Shao C, Liu Y (2011) J Colloid Interface Sci 359:220

    Article  CAS  PubMed  Google Scholar 

  19. Sedghi R, Nabid MR, Shariati M, Behbahani M, Moazzami HR (2016) Fibers Polym 17:1969–1976

    Article  CAS  Google Scholar 

  20. Ramos PG, Flores E, Sánchez LA, Candal RJ, Hojamberdiev M, Estrada W, Rodriguez J (2017) Appl Surf Sci 426:844–851

    Article  CAS  Google Scholar 

  21. Wang ZG, Wan LS, Xu ZK (2007) J Membr Sci 304:8–23

    Article  CAS  Google Scholar 

  22. Hong Y, Li D, Zheng J, Zou G (2006) Nanotechnology 17:1986–1993

    Article  CAS  Google Scholar 

  23. Chen L, Bromberg L, Schreuder-Gibson H, Walker J, Hatton TA, Rutledge GC (2009) J Mater Chem 19:2432–2438

    Article  CAS  Google Scholar 

  24. Byrne N, Leblais A, Fox B (2014) J Mater Chem A 2:3424–3429

    Article  CAS  Google Scholar 

  25. Korina E, Stoilova O, Manolova N, Rashkov I (2013) Macromol Biosci 13:707–716

    Article  CAS  PubMed  Google Scholar 

  26. Korina E, Stoilova O, Manolova N, Rashkov I (2014) J Mater Sci 49:2144–2153

    Article  CAS  Google Scholar 

  27. Korina E, Stoilova O, Manolova N, Rashkov I (2018) J Environ Chem Eng 6:2075–2084

    Article  CAS  Google Scholar 

  28. Zhong XH, Kim KS, Fang DF, Ran SF, Hsiao BS, Chu B (2002) Polymer 43:4403

    Article  Google Scholar 

  29. Haghi AK, Akbari M (2007) Phys Status Solidi A 204:1830–1834

    Article  CAS  Google Scholar 

  30. Muthukumaran S, Kumar MA (2013) Mater Lett 93:223–225

    Article  CAS  Google Scholar 

  31. Wang L, Huang S, Sun Y (2013) Appl Surf Sci 270:178–183

    Article  CAS  Google Scholar 

  32. Saranya M, Santhosh C, Ramachandran R, Grace AN (2014) J Nanotechnol 2014:321571

    Article  Google Scholar 

  33. Wang J, Hu L, Yang C, Zhao W, Lu Y (2016) RSC Adv 6:73404–73411

    Article  CAS  Google Scholar 

  34. Nguyen-Thai NU, Hong SC (2013) Macromolecules 46:5882–5889

    Article  CAS  Google Scholar 

  35. Liang N, Zai J, Xu M, Zhu Q, Wei X, Qian X (2014) J Mater Chem A 2:4208

    Article  CAS  Google Scholar 

  36. Liang N, Wang M, Jin L, Huang S, Chen W, Xu M, He Q, Zai J, Fang N, Qian X (2014) ACS Appl Mater Interfaces 6:11698–11705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the Vietnam Academy of Science and Technology and Bulgarian Academy of Sciences (Bilateral Grant agreement between VAST and BAS, project VAST.HTQT. BULGARIA.01/17–18) is kindly acknowledged. We thank the National Key Laboratory for Electronic Materials and Devices (VAST/IMS) for the use of facilities. The authors thank Prof. D. Karashanova at Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences for the help in TEM analyses and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ung Thi Dieu Thuy or Olya Stoilova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuy, U.T.D., Borisova, I., Stoilova, O. et al. Electrospun CuS/ZnS–PAN Hybrids as Efficient Visible-Light Photocatalysts. Catal Lett 148, 2756–2764 (2018). https://doi.org/10.1007/s10562-018-2482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2482-5

Keywords

Navigation