Skip to main content
Log in

Preparation of PAN-based electrospun nanofiber webs containing Ni-ZnO as high performance visible light photocatalyst

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The one dimensional (1D) Ni-ZnO nanoparticles have been synthesized by a simple hydrothermal method. A novel photocatalyst of nanostructured Ni-ZnO which immobilized on polyacrylonitrile nanofibers were successfully fabricated using electrospinnig technique. The structures of nanofibers were characterized by various techniques including Scanning Electron Microscope (SEM), X-ray powder Diffraction (XRD), Fourier transform infrared (FT-IR), UV-Vis diffuse reflectance (DR) and thermogravimetric analys (TGA). The Ni-ZnO/PAN nanofibers photodegradation efficiency was optimized with factorial design method in order to act highly effective in the photocatalytic degradation of Methyle orange (MO). The highest decolorizing efficiencies using introduced material were achieved by 0.8 g l -1 of catalyst and 10 mg l -1 of MO at natural pH under visible light irradiation. The obtained results exhibited that Ni-ZnO/PAN nanofibers have high visible light photocatalitic activities. Overall, the presented material can be used as an efficient, low cost and healthily secure photocatalyst in the field of water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Hilal, A. H. Zyoud, N. Zaatar, C. Ali, G. Campet, D. Park, and I. Saadeddin, J. Hazard. Mater., 173, 318 (2009).

    Google Scholar 

  2. H. S. Hilal, G. Y. M. Al-Nour, A. Zyoud, M. H. Helal, and I. Saadeddin, Solid State Sci., 12, 578 (2010).

    Article  CAS  Google Scholar 

  3. A. H. Zyoud and H. S. Hilal, “Water Purification”, pp. 203–226, Nova Science Publishing, New York, 2009.

    Google Scholar 

  4. H. S. Hilal, G. Y. M. Nour, and A. Zyoud, “Water Purification”, pp.227–246, Nova Science Publishing, New York, 2009.

    Google Scholar 

  5. J. Yun, D. Jin, Y. S. Lee, and H. I. Kim, Mater. Lett., 64, 2431 (2010).

    Article  CAS  Google Scholar 

  6. Z. Zhang, C. Shao, L. Zhang, X. Li, and Y. Liu, J. Colloid Interface Sci., 351, 57 (2010).

    Article  CAS  Google Scholar 

  7. T. He, Z. Zhou, W. Xu, F. Ren, H. Ma, and J. Wang, Polymer, 50, 3031 (2009).

    Article  CAS  Google Scholar 

  8. J. Richardson, A. J. Matchett, J. M. Coulthard, S. Gibbon, and C. Wilson, and C. Watson, Chem. Eng. Res. Des., 78, 39 (2000).

    Article  CAS  Google Scholar 

  9. G. T. Lim, K. H. Kim, J. Park, S. H. Ohk, J. H. Kim, and D. L. Cho, J. Ind. Eng. Chem., 16, 723 (2010).

    Article  CAS  Google Scholar 

  10. D. Wang, L. Xiao, Q. Luo, X. Li, J. An, and Y. Duan, J. Hazard. Mater., 192, 150 (2011).

    Article  CAS  Google Scholar 

  11. N. Negishi, K. Takeuchi, and T. Ibusuki, Appl. Surf. Sci., 121, 417 (1997).

    Article  Google Scholar 

  12. J. Liao, S. Lin, L. Zhang, N. Pan, X. Cao, and J. Li, ACS Appl. Mater. Interface, 4, 171 (2012).

    Article  CAS  Google Scholar 

  13. H. Usui, J. Phys. Chem. C, 111, 9060 (2007).

    Article  CAS  Google Scholar 

  14. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, and D. R. Lee, Nanotechnology, 15, 320 (2004).

    Article  CAS  Google Scholar 

  15. Y. Cui, C. Wang, G. Liu, H. Yang, S. Wu, and T. Wang, Mater Lett., 65, 2284 (2011).

    Article  CAS  Google Scholar 

  16. J. Song, Y. Zhang, C. Xu, W. Wu, and Z. L. Wang, Nano Lett., 11, 2829 (2011).

    Article  CAS  Google Scholar 

  17. N. Sangkhaprom, P. Supaphol, and V. Pavarajarn, Ceram. Int., 36, 357 (2010).

    Article  CAS  Google Scholar 

  18. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  19. K. Jayaraman, M. Kotaki, Y. Zhang, X. Mo, and S. Ramakrishna, J. Nanosci. Nanotechnol., 4, 52 (2004).

    CAS  Google Scholar 

  20. R. Dersh, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, Polym. Adv. Technol., 16, 276 (2005).

    Article  Google Scholar 

  21. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  22. D. H. Tong, P. D. Tran, X. T. T. Pham, V. B. Pham, T. T. T. Le, M. C. Dang, and C. J. M. V. Rijn, Adv. Nat. Sci-Nanosci. Nanotechnol., 1, 015011 (2010).

    Article  Google Scholar 

  23. E. P. Lee and Y. Xia, Nano Res., 1, 129 (2008).

    Article  CAS  Google Scholar 

  24. M. Venkatesan, C. B. Fizgerald, J. G. Lunney, and J. M. D. Coey, Phys. Rev. Lett., 93, 177206-1 (2004).

  25. X. X. Liu, F. T. Lin, L. L. Sun, W. J. Cheng, X. M. Ma, and W. Z. Shi, Appl. Phys. Lett., 88, 062508 (2006).

    Article  Google Scholar 

  26. S. K. Lim, S. K. Lee, S. H. Hwang, and H. Kim, Macromol. Mater. Eng., 291, 1265 (2006).

    Article  CAS  Google Scholar 

  27. C. Drew, X. Liu, D. Ziegler, X. Y. Wang, F. F. Bruno, J. Whitten, L. A. Samuelson, and J. Kumar, Nano Lett., 3, 143 (2003).

    Article  CAS  Google Scholar 

  28. C. Cheng, G. Xu, H. Zhang, and Y. Luo, Mater Lett., 62, 1617 (2008).

    Article  CAS  Google Scholar 

  29. M. C. Denney, V. Pons, T. J. Hebden, D. M. Heinekey, and K. I. Goldberg, J. Am. Chem. Soc., 128, 12048 (2006).

    Article  CAS  Google Scholar 

  30. O. Metin, V. Mazumder, S. Özkar, and S. Sun, J. Am. Chem. Soc., 132, 1468 (2010).

    Article  CAS  Google Scholar 

  31. E. Tang, B. Tian, E. Zheng, C. Fu, and G. Cheng, Chem. Eng. Commun., 195, 479 (2008).

    Article  CAS  Google Scholar 

  32. M. Zhang, C. Shao, P. Zhang, C. Su, X. Zhang, P. Liang, Y. Sun, and Y. Liu, J. Hazard. Mater., 225, 155 (2012).

    Article  Google Scholar 

  33. E. Bluhm, M. G. Bradley, R. Butterick, U. Kusari, and L. G. Sneddon, J. Am. Chem. Soc., 128, 7748 (2006).

    Article  CAS  Google Scholar 

  34. C. Y. Su, J. Liu, C. L. Shao, and Y. C. Liu, J. Non-Cryst. Solids, 357, 1488 (2011).

    Article  CAS  Google Scholar 

  35. W. D. Wang, P. Serp, P. Kalck, and J. L. Faria, Appl. Catal., 56, 305 (2005).

    Article  CAS  Google Scholar 

  36. X. X. Xue, W. Ji, Z. Mao, Z. S. Li, W. D. Ruan, B. Zhao, and J. R. Lombardi, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 95, 213 (2012).

    Article  CAS  Google Scholar 

  37. J. Fan, X. Hu, Z. Xie, K. Zhang, and J. Wang, Chem. Eng. J., 179, 44 (2012).

    Article  CAS  Google Scholar 

  38. S. K. Kansal, M. Singh, and D. Sud, J. Hazard. Mater., 141, 581 (2007).

    Article  CAS  Google Scholar 

  39. J. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, and P. Wu, Surf. Coat. Technol., 204, 205 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Sedghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedghi, R., Nabid, M.R., Shariati, M. et al. Preparation of PAN-based electrospun nanofiber webs containing Ni-ZnO as high performance visible light photocatalyst. Fibers Polym 17, 1969–1976 (2016). https://doi.org/10.1007/s12221-016-6731-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6731-1

Keywords

Navigation