Skip to main content

Advertisement

Log in

Multi-doped Brookite-Prevalent TiO2 Photocatalyst with Enhanced Activity in the Visible Light

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Enabling solar and/or visible light-driven photocatalysis is a crucial step to access innovative applications in environmental science and sustainable energy. Titanium dioxide is the most used photocatalyst because of its low cost and toxicity, however it is also limitedly active under visible light irradiation due to its wide band gap. Among its polymorphs, brookite holds promising optoelectronic properties for visible light photocatalysis, which have to the best of our knowledge been limitedly exploited. Here, a C,S,N-doped brookite-based TiO2 has been prepared via a rapid one-pot sol–gel synthesis. Besides substantially extending the visible light absorption via band gap narrowing, its photocatalytic activity has been enhanced further by optimising valence and conductive band position and by minimising electron–hole recombination. These materials showed a 100% boost in visible light absorption along with nearly 50-times enhanced photocatalytic activity per specific surface area than standard TiO2 Degussa-P25, giving the best performance among the brookite-based photo-catalytically active materials and resulting among the TiO2 top-performers under visible light.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang Q, Huang Y, Xu LF, Cao JJ, Ho WK, Lee SC (2016) ACS Appl Mater Interfaces 8:4165

    Article  CAS  PubMed  Google Scholar 

  2. Faraldos M, Kropp R, Anderson MA, Sobolev K (2016) Catal Today 259:228

    Article  CAS  Google Scholar 

  3. Banerjee S, Dionysiou DD, Pillai SC (2015) Appl Catal B 176:396

    Article  CAS  Google Scholar 

  4. Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) J Mater Chem 21:16304

    Article  CAS  Google Scholar 

  5. Zhang W, Jia B, Wang Q, Dionysiou D (2015) J Nanopart Res 17:1

    Article  CAS  Google Scholar 

  6. Romão J, Barata D, Ribeiro N, Habibovic P, Fernandes H, Mul G (2017) Environ Pollut 220:1199

    Article  CAS  PubMed  Google Scholar 

  7. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  PubMed  Google Scholar 

  8. Acar C, Dincer I, Naterer GF (2016) Int J Energy Res 40:1449

    Article  CAS  Google Scholar 

  9. Jafari T, Moharreri E, Amin AS, Miao R, Song W, Suib SL (2016) Molecules 21:900

    Article  CAS  Google Scholar 

  10. Ampelli C, Centi G, Passalacqua R, Perathoner S (2016) Catal Today 259:246

    Article  CAS  Google Scholar 

  11. Guo Q, Zhou C, Ma Z, Ren Z, Fan H, Yang X (2016) Chem Soc Rev 45:3701

    Article  CAS  PubMed  Google Scholar 

  12. Landmann M, Rauls E, Schmidt WG (2012) J Phys Condens Matter 24:195503

    Article  CAS  PubMed  Google Scholar 

  13. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Sci Rep 4:4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim W, Tachikawa T, Moon G-h, Majima T, Choi W (2014) Angew Chem Int Ed 53:14036

    Article  CAS  Google Scholar 

  15. Di Paola A, Bellardita M, Palmisano L (2013) Catalysts 3:36

    Article  CAS  Google Scholar 

  16. Banerjee S, Gopal J, Muraleedharan P, Tyagi K, Raj B (2006) Curr Sci 90:1378

    CAS  Google Scholar 

  17. Wunderlich W, Oekermann T, Miao L, Hue NT, Tanemura S, Tanemura M (2004) J Ceram Process Res 5:343

    Google Scholar 

  18. Shibata T, Irie H, Ohmori M, Nakajima A, Watanabe T, Hashimoto K (2004) Phys Chem Chem Phys 6:1359

    Article  CAS  Google Scholar 

  19. Koelsch M, Cassaignon S, Guillemoles JF, Jolivet JP (2002) Thin Solid Films 403–404:312

    Article  Google Scholar 

  20. Štengl V, Králová D (2011) Mater Chem Phys 129:794

    Article  CAS  Google Scholar 

  21. Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Nanotechnology 19:145605

    Article  CAS  PubMed  Google Scholar 

  22. Mattsson A, Österlund L (2010) J Phys Chem C 114:14121

    Article  CAS  Google Scholar 

  23. López-Muñoz MJ, Revilla A, Alcalde G (2015) Catal Today 240:138

    Article  CAS  Google Scholar 

  24. Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) J Photochem Photobiol A 216:179

    Article  CAS  Google Scholar 

  25. Lin H, Li L, Zhao M, Huang X, Chen X, Li G, Yu R (2012) J Am Chem Soc 134:8328

    Article  CAS  PubMed  Google Scholar 

  26. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) J Photochem Photobiol C 25:1

    Article  CAS  Google Scholar 

  27. Fu C, Gong Y, Wu Y, Liu J, Zhang Z, Li C, Niu L (2016) Appl Surf Sci 379:83

    Article  CAS  Google Scholar 

  28. Tosoni S, Fernandez Hevia D, Gonzalez Diaz O, Illas F (2012) J Phys Chem Lett 3:2269

    Article  CAS  PubMed  Google Scholar 

  29. Reddy PAK, Reddy PVL, Kim K-H, Kumar MK, Manvitha C, Shim J-J (2017) J Ind Eng Chem 53:253

    Article  CAS  Google Scholar 

  30. Pikuda O, Garlisi C, Scandura G, Palmisano G (2017) J Catal 346:109

    Article  CAS  Google Scholar 

  31. Ozer Y, Shin L, Felten Y, Oladipo A, Pikuda H, Muryn O, Casiraghi C, Palmisano C G (2017) J Environ Chem Eng 5:5091

    Article  CAS  Google Scholar 

  32. Lei XF, Zhang ZN, Wu ZX, Piao YJ, Chen C, Li X, Xue XX, Yang H (2017) Sep Purif Technol 174:66

    Article  CAS  Google Scholar 

  33. Tang X, Li D (2008) J Phys Chem C 112:5405

    Article  CAS  Google Scholar 

  34. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) Appl Catal B 125:331

    Article  CAS  Google Scholar 

  35. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    Article  CAS  PubMed  Google Scholar 

  36. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Appl Catal A 265:115

    Article  CAS  Google Scholar 

  37. Etacheri V, Michlits G, Seery MK, Hinder SJ, Pillai SC (2013) ACS Appl Mater Interfaces 5:1663

    Article  CAS  PubMed  Google Scholar 

  38. Feng H, Zhang M-H, Yu LE (2013) J Nanosci Nanotechnol 13:4981

    Article  CAS  PubMed  Google Scholar 

  39. Yin S, Aita Y, Komatsu M, Wang J, Tang Q, Sato T (2005) J Mater Chem 15:674

    Article  CAS  Google Scholar 

  40. Hao H, Zhang J (2009) Microporous Mesoporous Mater 121:52

    Article  CAS  Google Scholar 

  41. El-Sheikh SM, Zhang G, El-Hosainy HM, Ismail AA, O’Shea KE, Falaras P, Kontos AG, Dionysiou DD (2014) J Hazard Mater 280:723

    Article  CAS  PubMed  Google Scholar 

  42. Zhang G, Zhang YC, Nadagouda M, Han C, O’Shea K, El-Sheikh SM, Ismail AA, Dionysiou DD (2014) Appl Catal B 144:614

    Article  CAS  Google Scholar 

  43. Mutuma BK, Shao GN, Kim WD, Kim HT (2015) J Colloid Interf Sci 442:1

    Article  CAS  Google Scholar 

  44. Beranek R (2011) Adv Phys Chem 2011:1

    Article  CAS  Google Scholar 

  45. Roy AM, De GC, Sasmal N, Bhattacharyya SS (1995) Int J Hydrog Energy 20:627

    Article  CAS  Google Scholar 

  46. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Pure Appl Chem 87:1051

    Article  CAS  Google Scholar 

  47. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2012) Inorg Chem 51:7164

    Article  CAS  PubMed  Google Scholar 

  48. Wang P, Yap P-S, Lim T-T (2011) Appl Catal A 399:252

    Article  CAS  Google Scholar 

  49. Wang Y, Huang Y, Ho W, Zhang L, Zou Z, Lee S (2009) J Hazard Mater 169:77

    Article  CAS  PubMed  Google Scholar 

  50. Gu DE, Lu Y, Yang BC, Hu YD (2008) Chem Commun 21:2453

    Article  CAS  Google Scholar 

  51. Rengifo-Herrera JA, Pierzchała K, Sienkiewicz A, Forró L, Kiwi J, Pulgarin C (2009) Appl Catal B 88:398

    Article  CAS  Google Scholar 

  52. Wei F, Ni L, Cui P (2008) J Hazard Mater 156:135

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Lim T-T (2010) Appl Catal B 100:355

    Article  CAS  Google Scholar 

  54. Diwald O, Thompson TL, Zubkov T, Walck SD, Yates JT (2004) J Phys Chem B 108:6004

    Article  CAS  Google Scholar 

  55. Sun H, Bai Y, Cheng Y, Jin W, Xu N (2006) Ind Eng Chem Res 45:4971

    Article  CAS  Google Scholar 

  56. Lee HU, Lee Y-C, Lee SC, Park SY, Son B, Lee JW, Lim C-H, Choi C-J, Choi M-H, Lee SY, Oh Y-K, Lee J (2014) Chem Eng J 254:268

    Article  CAS  Google Scholar 

  57. Fan D, Weirong Z, Zhongbiao W (2008) Nanotechnology 19:365607

    Article  CAS  Google Scholar 

  58. Chen X, Burda C (2004) J Phys Chem B 108:15446

    Article  CAS  Google Scholar 

  59. Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349

    Article  CAS  Google Scholar 

  60. György E, Pérez del Pino A, Serra P, Morenza JL (2003) Surf Coat Technol 173:265

    Article  CAS  Google Scholar 

  61. Park J-Y, Lee C, Jung K-W, Jung D (2009) Bull Korean Chem Soc 30:402

    Article  CAS  Google Scholar 

  62. Prasai B, Cai B, Underwood MK, Lewis JP, Drabold DA (2012) J Mater Sci 47:7515

    Article  CAS  Google Scholar 

  63. Kramer B, Maschke K, Thomas P (1971) Phys Status Solidi B 48:635

    Article  CAS  Google Scholar 

  64. Banerjee S, Pillai SC, Falaras P, O’Shea KE, Byrne JA, Dionysiou DD (2014) J Phys Chem Lett 5:2543

    Article  CAS  PubMed  Google Scholar 

  65. Li J-G, Tang C, Li D, Haneda H, Ishigaki T (2004) J Am Ceram Soc 87:1358

    Article  CAS  Google Scholar 

  66. Perego C, Wang Y-H, Durupthy O, Cassaignon S, Revel R, Jolivet J-P (2012) ACS Appl Mater Interfaces 4:752

    Article  CAS  PubMed  Google Scholar 

  67. Sato T, Aita Y, Komatsu M, Yin S (2006) J Mater Sci 41:1433

    Article  CAS  Google Scholar 

  68. García-Valenzuela JA (2017) Comments Inorg Chem 37:99

    Article  CAS  Google Scholar 

  69. Li Z, Cong S, Xu Y (2014) ACS Catal 4:3273

    Article  CAS  Google Scholar 

  70. Ohtani B (2014) Electrochemistry 82:414

    Article  CAS  Google Scholar 

  71. Ohtani B (2014) Phys Chem Chem Phys 16:1788

    Article  CAS  PubMed  Google Scholar 

  72. Henderson MA (2011) Surf Sci Rep 66:185

    Article  CAS  Google Scholar 

  73. Liu K-I, Su C-Y, Perng T-P (2015) RSC Adv 5:88367

    Article  CAS  Google Scholar 

  74. Zhao Y, Huang X, Tan X, Yu T, Li X, Yang L, Wang S (2016) Appl Surf Sci 365:209

    Article  CAS  Google Scholar 

  75. Rtimi S, Pulgarin C, Sanjines R, Kiwi J (2015) Appl Catal B 162:236

    Article  CAS  Google Scholar 

  76. Krumova K, Cosa G (2016) In: Nonell S, Flors C (eds) Singlet oxygen: applications in biosciences and nanosciences, vol 1. The Royal Society of Chemistry, Cambridge, ch. 1

    Chapter  Google Scholar 

  77. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2001) Appl Catal B 31:145

    Article  CAS  Google Scholar 

  78. Tomić N, Grujić-Brojčin M, Finčur N, Abramović B, Simović B, Krstić J, Matović B, Šćepanović M (2015) Mater Chem Phys 163:518

    Article  CAS  Google Scholar 

  79. Luo B, Li Z, Xu Y (2015) RSC Adv 5:105999

    Article  CAS  Google Scholar 

  80. Luís AM, Neves MC, Mendonça MH, Monteiro OC (2011) Mater Chem Phys 125:20

    Article  CAS  Google Scholar 

  81. Yang W, Wen Y, Zeng D, Wang Q, Chen R, Wang W, Shan B (2014) J Mater Chem A 2:20770

    Article  CAS  Google Scholar 

  82. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CR, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Nat Mater 12:798

    Article  CAS  PubMed  Google Scholar 

  83. Cataldo S, Sartorio C, Giannazzo F, Scandurra A, Pignataro B (2014) Nanoscale 6:3566

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Italian Ministry of Education, University and Research (project TECLA; Grant Number PON03PE_00214_1). The authors would like to acknowledge Michelangelo Scopelliti (Palermo University) for XPS spectra measurement, Salvatore Cataldo (Palermo University) for TOC measurement, Gang Wang (Utrecht University) for the precious help in the set-up of photocatalytic experiments and Jochem Wijten (Utrecht University) for the fruitful discussion on electrochemistry and the settlement of the related measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Cataldo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cataldo, S., Weckhuysen, B.M., Pettignano, A. et al. Multi-doped Brookite-Prevalent TiO2 Photocatalyst with Enhanced Activity in the Visible Light. Catal Lett 148, 2459–2471 (2018). https://doi.org/10.1007/s10562-018-2463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2463-8

Keywords

Navigation