Skip to main content
Log in

A Comparative Study of Supported and Bulk Cu–Mn–Ce Composite Oxide Catalysts for Low-Temperature CO Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of supported and bulk Cu–Mn–Ce ternary oxide catalysts was synthesized by wet-impregnation (IM), deposition–precipitation (DP), traditional co-precipitation (CP), co-precipitation with cetyltrimethyl ammonium bromide (CC), and sol–gel (SG) methods. The supported catalysts (CuMn/Ce-IM, CuMn/Ce-DP) exhibited significantly higher activity for CO oxidation than the bulk catalysts (CuMnCe-CP, CuMnCe-CC and CuMnCe-SG). The improved performance could be attributed to the presence of more isolated CuO and MnOx entities on the surface of supported catalysts, which contributed to the efficient utilization of both lattice oxygen from CeO2 and spillover oxygen from surface MnOx. For bulk catalysts, major Cu–Mn species were doped to form \({\text{C}}{{\text{u}}_{\text{x}}}{\text{M}}{{\text{n}}_{\text{y}}}{\text{C}}{{\text{e}}_{1 - {\text{x}} - {\text{y}}}}{{\text{O}}_{2 - {\text{z}}}}\) solid solutions and a part of them were coated by ceria mechanically. Lowest 50% CO conversion temperature were achieved at 76.9 °C for CuMn/Ce-IM catalyst. Low-temperature CO oxidation activities of all catalysts were in the sequence of CuMn/Ce-IM > CuMn/Ce-DP > CuMnCe-SG > CuMnCe-CC > CuMnCe-CP.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Qi J, Chen J, Li G, Li S, Gao Y, Tang Z (2012) Energy Environ Sci 5:8937–8941

    Article  CAS  Google Scholar 

  2. Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Nature 458:746–749

    Article  CAS  PubMed  Google Scholar 

  3. Venkataswamy P, Devaiah D, Kuntaiah K, Vithal M, Reddy BM (2017) Catal Lett 147:2028–2044

    Article  CAS  Google Scholar 

  4. Sang YH, Zhang C, Yurchekfrodl E, Peng Z (2014) J Phys Chem C 118:28739–28745

    Article  CAS  Google Scholar 

  5. Guo YF, Lin J, Li CH, Lu SX, Zhao CW (2016) Catal Lett 146:2364–2375

    Article  CAS  Google Scholar 

  6. Chen MS, Cal Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Surf Sci 601:5326–5331

    Article  CAS  Google Scholar 

  7. Freund HJ, Meijer G, Scheffler M, Schlogl R, Wolf M (2011) Angew Chem Int Ed 50:10064–10094

    Article  CAS  Google Scholar 

  8. Li L, Wang A, Qiao B, Lin J, Huang Y, Wang X, Zhang T (2013) J Catal 299:90–100

    Article  CAS  Google Scholar 

  9. Li G, Li L, Yuan Y, Shi J, Yuan Y, Li Y, Zhao W, Shi J (2014) Appl Catal B 158:341–347

    Article  CAS  Google Scholar 

  10. Son I, Lane A, Johnson D (2003) J Power Sources 124:415–419

    Article  CAS  Google Scholar 

  11. Wang D, Li Y (2010) J Am Chem Soc 132:6280–6281

    Article  CAS  PubMed  Google Scholar 

  12. Wang F, Lu GX (2010) Int J Hydrog Energy 35:7253–7260

    Article  CAS  Google Scholar 

  13. Uzun A, Ortalan V, Browning ND, Gates BC (2010) J Catal 269:318–328

    Article  CAS  Google Scholar 

  14. Uzun A, Ortalan V, Hao YL, Browning ND, Gates BC (2009) ACS Nano 3:3691–3695

    Article  CAS  PubMed  Google Scholar 

  15. Na H, Zhu T, Liu Z (2014) Catal Sci Technol 4:2051–2057

    Article  CAS  Google Scholar 

  16. Zhu J, Gao Q (2009) Microporous Mesoporous Mater 124:144–152

    Article  CAS  Google Scholar 

  17. Luo J-Y, Meng M, Yao J-S, Li X-G, Zha Y-Q, Wang X, Zhang T-Y (2009) Appl Catal B 87:92–103

    Article  CAS  Google Scholar 

  18. Song Z, Liu W, Nishiguchi H, Takami A, Nagaoka K, Takita Y (2007) Appl Catal A 329:86–92

    Article  CAS  Google Scholar 

  19. Yang Q, Du L, Wang X, Jia C, Si R (2016) Chin J Catal 37:1331–1339

    Article  CAS  Google Scholar 

  20. Avgouropoulos G, Ioannides T, Matralis HK, Batista J, Hocevar S (2001) Catal Lett 73:33–40

    Article  CAS  Google Scholar 

  21. Liu W, Flytzanistephanopoulos M (1995) J Catal 153:304–316

    Article  CAS  Google Scholar 

  22. Liu W, Flytzani-Stephanopoulos M (1996) Chem Eng J 64:283–294

    CAS  Google Scholar 

  23. Liu W, Flytzanistephanopoulos M (1995) J Catal 153:317–332

    Article  CAS  Google Scholar 

  24. Sedmak G, Hočevar S, Levec J (2003) J Catal 213:135–150

    Article  CAS  Google Scholar 

  25. Manzoli M, Di Monte R, Boccuzzi F, Coluccia S, Kaspar J (2005) Appl Catal B 61:192–205

    Article  CAS  Google Scholar 

  26. Martınez-Arias A, Fernández-Garcıa M, Gálvez O, Coronado J, Anderson J, Conesa J, Soria J, Munuera G (2000) J Catal 195:207–216

    Article  CAS  Google Scholar 

  27. Marban G, Lopez I, Valdes-Solis T (2009) Appl Catal A 361:160–169

    Article  CAS  Google Scholar 

  28. Sun S, Mao D, Yu J, Yang Z, Lu G, Ma Z (2015) Catal Sci Technol 5:3166–3181

    Article  CAS  Google Scholar 

  29. Guo YF, Zhao CW, Lin J, Li CH, Lu SX (2017) Catal Commun 99:1–5

    Article  CAS  Google Scholar 

  30. Lin J, Guo Y, Chen X, Li C, Lu S, Liew KM (2018) Catal Lett 148:181–193

    Article  CAS  Google Scholar 

  31. Li J, Zhu PF, Zuo SF, Huang QQ, Zhou RX (2010) Appl Catal A 381:261–266

    Article  CAS  Google Scholar 

  32. Li J, Zhu P, Zhou R (2011) J Power Sources 196:9590–9598

    Article  CAS  Google Scholar 

  33. Jia AP, Deng Y, Hu GS, Luo MF, Lu JQ (2015) React Kinet Mech Catal 117:503–520

    Article  CAS  Google Scholar 

  34. Cargnello M, Doan-Nguyen VV, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Science 341:771–773

    Article  CAS  PubMed  Google Scholar 

  35. Laguna O, Pérez A, Centeno M, Odriozola J (2015) Appl Catal B 176:385–395

    Article  CAS  Google Scholar 

  36. Wang Y, Xue Y, Zhao C, Zhao D, Liu F, Wang K, Dionysiou DD (2016) Chem Eng J 300:300–305

    Article  CAS  Google Scholar 

  37. Huang X-S, Sun H, Wang L-C, Liu Y-M, Fan K-N, Cao Y (2009) Appl Catal B 90:224–232

    Article  CAS  Google Scholar 

  38. Choi K-H, Lee D-H, Kim H-S, Yoon Y-C, Park C-S, Kim YH (2016) Ind Eng Chem Res 55:4443–4450

    Article  CAS  Google Scholar 

  39. Venkataswamy P, Rao KN, Jampaiah D, Reddy BM (2015) Appl Catal B 162:122–132

    Article  CAS  Google Scholar 

  40. Kuntaiah K, Sudarsanam P, Reddy BM, Vinu A (2013) RSC Adv 3:7953–7962

    Article  CAS  Google Scholar 

  41. Liu H-H, Wang Y, Jia A-P, Wang S-Y, Luo M-F, Lu J-Q (2014) Appl Surf Sci 314:725–734

    Article  CAS  Google Scholar 

  42. Guo YF, Li CH, Lu SX, Zhao CW (2016) RSC Adv 6:7181–7188

    Article  CAS  Google Scholar 

  43. Guo Y, Zhao C, Lin J, Li C, Lu S (2017) Catal Commun 99:1–5

    Article  CAS  Google Scholar 

  44. Hong W-J, Iwamoto S, Hosokawa S, Wada K, Kanai H, Inoue M (2011) J Catal 277:208–216

    Article  CAS  Google Scholar 

  45. Zhang S, Liu H, Sun C, Liu P, Li L, Yang Z, Feng X, Huo F, Lu X (2015) J Mater Chem A 3:5294–5298

    Article  CAS  Google Scholar 

  46. Jia A-P, Hu G-S, Meng L, Xie Y-L, Lu J-Q, Luo M-F (2012) J Catal 289:199–209

    Article  CAS  Google Scholar 

  47. Buciuman FC, Patcas F, Hahn T (1999) Chem Eng Process 38:563–569

    Article  CAS  Google Scholar 

  48. Schwab G-M, Kanungo SB (1977) Z Phys Chem 107:109–120

    Article  CAS  Google Scholar 

  49. Larachi F, Pierre J, Adnot A, Bernis A (2002) Appl Surf Sci 195:236–250

    Article  CAS  Google Scholar 

  50. Cao JL, Wang Y, Zhang TY, Wu SH, Yuan ZY (2008) Appl Catal B 78:120–128

    Article  CAS  Google Scholar 

  51. Tahir D, Tougaard S (2012) J Phys Condens Matter 24:175002

    Article  CAS  PubMed  Google Scholar 

  52. Avgouropoulos G, Ioannides T (2003) Appl Catal A 244:155–167

    Article  CAS  Google Scholar 

  53. Platau A, Johansson LI, Hagstrom AL, Karlsson SF, Hagstrom SBM (1977) Surf Sci 63:153–161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. WK2320000034), the National Natural Science Foundation of China (No. 51704268), the Opening Fund of State Key Laboratory of Fire Science (No. HZ2018-KF10) and the Research Grants Council of the Hong Kong Special Administrative Region, China (No. 9042354, CityU 11261216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shouxiang Lu or Xiao Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Guo, Y., Li, C. et al. A Comparative Study of Supported and Bulk Cu–Mn–Ce Composite Oxide Catalysts for Low-Temperature CO Oxidation. Catal Lett 148, 2348–2358 (2018). https://doi.org/10.1007/s10562-018-2445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2445-x

Keywords

Navigation