Skip to main content
Log in

Structural Dynamics of Dispersed Titania During Dehydration and Oxidative Dehydrogenation Studied by In Situ UV Raman Spectroscopy

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The structural dynamics of dispersed titania, i.e., silica supported titania, is investigated during dehydration and oxidative dehydrogenation (ODH) of ethanol using optical spectroscopy. UV Raman spectroscopy enabling resonance enhancements proves to be a valuable tool to identify Ti–OH, Ti–O–Si, and Ti–O–Ti groups. Upon dehydration, a transformation of Ti–OH into Ti–O–Si and Ti–O–Ti groups is observed. Two types of Ti–OH vibrations (isolated, geminal) are identified at around 700 and 800 cm− 1 in agreement with theoretical models. Dispersed titania is catalytically active in ethanol ODH with a performance comparable to dispersed vanadia. In situ UV Raman spectra reveal a consumption of Ti–O–Ti, Ti–O–Si, and Ti–OH groups during ethanol adsorption to the titania surface. The presented results are consistent with an ODH reaction mechanism involving a structural transformation of oligomerized or closely neighbored monomeric TiOX structures. The relevance of the proposed mechanism is discussed in the context of other supported transition metal oxide catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Gao XT, Bare SR, Fierro JLG, Banares MA, Wachs IE (1998) J Phys Chem B 102:5653

    Article  CAS  Google Scholar 

  2. Sannino D, Vaiano V, Ciambelli P, Carotenuto G, Di Serio M, Santacesaria E (2013) Catal Today 209:159

    Article  CAS  Google Scholar 

  3. Tian F, Zhang YP, Zhang J, Pan CX (2012) J Phys Chem C 116:7515

    Article  CAS  Google Scholar 

  4. Dilla M, Schlögl R, Strunk J (2017) ChemCatChem 9:696

    Article  CAS  Google Scholar 

  5. Hamilton N, Wolfram T, Müller GT, Hävecker M, Kröhnert J, Carrero C, Schomäcker R, Trunschke A, Schlögl R (2012) Catal Sci Technol 2:1346

    Article  CAS  Google Scholar 

  6. Carrero C, Kauer M, Dinse A, Wolfram T, Hamilton N, Trunschke A, Schlögl R, Schomäcker R (2014) Catal Sci Technol 4:786

    Article  CAS  Google Scholar 

  7. Hess C, Waleska P, Ratzka M, Janssens TVW, Rasmussen SB, Beato P (2017) Top Catal 60:1631

    Article  CAS  Google Scholar 

  8. Andrushkevich TV, Kaichev VV, Chesalov YA, Saraev AA, Buktiyarov VI (2017) Catal Today 279:95

    Article  CAS  Google Scholar 

  9. Jørgensen B, Kristensen SB, Kunov-Kruse AJ, Fehrmann R, Christensen CH, Riisager A (2009) Top Catal 52:253

    Article  CAS  Google Scholar 

  10. Wachs IE, Deo G, Weckhuysen BM, Andreini A, Vuurman MA, deBoer M, Amiridis MD (1996) J Catal 161:211

    Article  CAS  Google Scholar 

  11. Segura Y, Chmielarz L, Kustrowski P, Cool P, Dziembaj R, Vansant EF (2005) Appl Catal B 61:69

    Article  CAS  Google Scholar 

  12. Kwak JH, Herrera JE, Hu JZ, Wang Y, Peden CHF (2006) Appl Catal A 300:109

    Article  CAS  Google Scholar 

  13. Quaranta NE, Soria J, Corberán VC, Fierro JLG (1997) J Catal 171:1

    Article  CAS  Google Scholar 

  14. Beck B, Harth M, Hamilton NG et al (2012) J Catal 296:120

    Article  CAS  Google Scholar 

  15. Dinse A, Ozarowski A, Hess C, Schomäcker R, Dinse KP (2008) J Phys Chem C 112:17664

    Article  CAS  Google Scholar 

  16. Nitsche D, Hess C (2014) Chem Phys Lett 616:115

    Article  CAS  Google Scholar 

  17. Nitsche D, Hess C (2016) J Phys Chem C 120:1025

    Article  CAS  Google Scholar 

  18. Yang QH, Wang SL, Lu JQ, Xiong G, Feng ZC, Xin Q, Li C (2000) Appl Catal A 194:507

    Article  Google Scholar 

  19. Zhang L, Abbenhuis HCL, Gerritsen G, Ni Bhriain N, Magusin PCMM., Mezari B, Han W, van Santen RA, Yang QH, Li C (2007) Chem Eur J 13:1210

    Article  CAS  PubMed  Google Scholar 

  20. Zhang WH, Lu JQ, Han B, Li MJ, Xiu JH, Ying PL, Li C (2002) Chem Mater 14:3413

    Article  CAS  Google Scholar 

  21. Strunk J, Vining WC, Bell AT (2010) J Phys Chem C 114:16937

    Article  CAS  Google Scholar 

  22. Ruff P, Lauterbach S, Kleebe HJ, Hess C (2016) Microp Mesop Mater 235:160

    Article  CAS  Google Scholar 

  23. Nitsche D, Hess C (2013) J Raman Spectrosc 44:1733

    Article  CAS  Google Scholar 

  24. Waleska PS, Hess C (2016) J Phys Chem C 120:18510

    Article  CAS  Google Scholar 

  25. Waleska PS, Rupp S, Hess C (2018) J Phys Chem C 122:3386

    Article  CAS  Google Scholar 

  26. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) J Catal 203:82

    Article  CAS  Google Scholar 

  27. Hardcastle FD, Ishihara H, Sharma R, Biris AS (2011) J Mater Chem 21:6337

    Article  CAS  Google Scholar 

  28. Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321

    Article  Google Scholar 

  29. Zhang J, Xu Q, Li MJ, Feng ZC, Li C (2009) J Phys Chem C 113:1698

    Article  CAS  Google Scholar 

  30. Balachandran U, Eror NG (1982) J Solid State Chem 42:276

    Article  CAS  Google Scholar 

  31. Porto SPS, Fleury PA, Damen TC (1967) Phys Rev 154:522

    Article  CAS  Google Scholar 

  32. Klein S, Weckhuysen BM, Martens JA, Maier WF, Jacobs PA (1996) J Catal 163:489

    Article  CAS  Google Scholar 

  33. On DT, LeNoc L, Bonneviot L (1996) Chem Commun. https://doi.org/10.1039/CC9960000299

    Article  Google Scholar 

  34. Klokishner S, Reu O, Tzolova-Müller G, Schlögl R, Trunschke A (2014) J Phys Chem C 118:14677

    Article  CAS  Google Scholar 

  35. Sekiya T, Yagisawa T, Kamiya N, Das Mulmi D, Kurita S, Murakami Y, Kodaira T (2004) J Phys Soc Jpn 73:703

    Article  CAS  Google Scholar 

  36. Finnie KS, Luca V, Moran PD, Bartlett JR, Woolfrey JL (2000) J Mater Chem 10:409

    Article  CAS  Google Scholar 

  37. Moran PD, Bowmaker GA, Cooney RP, Finnie KS, Bartlett JR, Woolfrey JL (1998) Inorg Chem 37:2741

    Article  CAS  PubMed  Google Scholar 

  38. Björklund S, Kocherbitov V (2017) Sci Rep 7:9960

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vuurman MA, Wachs IE (1992) J Phys Chem 96:5008

    Article  CAS  Google Scholar 

  40. Li C (2003) J Catal 216:203

    Article  CAS  Google Scholar 

  41. Sänze S, Gurlo A, Hess C (2013) Angew Chem Int Ed 52:3607

    Article  CAS  Google Scholar 

  42. Jehng JM, Hu HC, Gao XT, Wachs IE (1996) Catal Today 28:335

    Article  CAS  Google Scholar 

  43. Housecroft CE, Sharpe AG (2012) Inorganic chemistry, Pearson, Harlow

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Severine Rupp and Patrick Ober for help with some of the Raman and UV–Vis experiments. Karl Kopp is acknowledged for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hess.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waleska, P., Hess, C. Structural Dynamics of Dispersed Titania During Dehydration and Oxidative Dehydrogenation Studied by In Situ UV Raman Spectroscopy. Catal Lett 148, 2537–2547 (2018). https://doi.org/10.1007/s10562-018-2442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2442-0

Keywords

Navigation