Skip to main content

Advertisement

Log in

On the Surface Nature of Bimetallic PdZn Particles Supported on a ZnO–CeO2 Nanocomposite for the Methanol Steam Reforming Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CO adsorption—as a molecular probe—was studied by transmission IR spectroscopy on pre-reduced Pd and bimetallic PdZn nanoparticles. Palladium was supported (2 wt% Pd) on pure CeO2, ZnO and a ZnO–CeO2 composite (atomic ratio Zn:Ce = 1:2). The Pd 3d5/2 binding energy shift, together with the formation of metallic zinc were consistent with the development of a PdZn alloy over the zinc-containing supports at increasing reduction temperature, as revealed by XPS. Following H2 reduction at 623 K the bimetallic particles showed only linear CO adsorption (COL) at initial contact time (10 Torr CO, 298 K), giving rise to a convoluted IR band ascribed to different Pd sites, where it was assumed that the Pd–Pd distances were larger than for pure Pd crystallites, indicating the presence of a PdZn alloyed surface. However, for longer exposure time to CO and/or higher superimposed pressure, the appearance of bridge and hollow coordinated CO (COB and COH, respectively) on the Pd sites suggested the degradation of the PdZn surface alloy, most likely due to the segregation of Pd surface patches. The temperature-programmed, dynamic isobaric adsorption of CO (TPA-CO), under flowing CO(1%)/He on the catalysts pre-reduced at 623 K (that is, for similar conditions to those found in the methanol steam reforming—MSR-process) showed faster desorption of COL as compared to COB + COH species for supported Pd/CeO2, as expected. However, the TPA-CO results on Pd/ZnO–CeO2 were atypical: even under the superimposed, low CO partial pressure, and for a temperature range similar to those found at high methanol conversion in the MSR reaction, the PdZn bimetallic surface nature was recovered, which could be an explanation of the good selectivity to CO2 of Pd/ZnO-based catalysts and—in particular—of the catalytically stable Pd/ZnO–CeO2 materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1
Fig. 12

Similar content being viewed by others

References

  1. Rebelli J, Detwiler M, Ma S, Williams CT, Monnier JR (2010) J Catal 270:224

    Article  CAS  Google Scholar 

  2. Rebelli J, Rodríguez AA, Ma S, Williams CT, Monnier JR (2011) Catal Today 160:170

    Article  CAS  Google Scholar 

  3. Rades T, Borovkov VY, Kazansky VB, Polisset-Thfoin M, Fraissard J (1996) J Am Chem Soc 100:16238

    CAS  Google Scholar 

  4. Kovnir K, Ambrüster M, Teschner D, Venkov TV, Szentmiklósi I, Jentoft FC, Knop-Gercke A, Grin Y, Schögl R (2009) Surf Sci 603:1784

    Article  CAS  Google Scholar 

  5. Collins SE, Delgado JJ, Mira C, Calvino JJ, Bernal S, Chiavassa DL, Baltanás MA, Bonivardi AL (2012) J Catal 292:90

    Article  CAS  Google Scholar 

  6. Föttinger K, Rupprechter G (2014) Acc Chem Res 47:3071

    Article  CAS  PubMed  Google Scholar 

  7. Lebarbier V, Dagle R, Conant T, Vohs JM, Datye AK, Wang Y (2008) Catal Lett 122:223

    Article  CAS  Google Scholar 

  8. Eswaramoorthi I, Dalai AK (2009) Int J Hydrog Energy 34:2580

    Article  CAS  Google Scholar 

  9. Conant T, Karim AM, Lebarbier V, Wang Y, Girgsdies F, Schlögl R, Datye A (2008) J Catal 257:64

    Article  CAS  Google Scholar 

  10. Pfeifer P, Schubert K, Liauw MA, Emig G (2004) Appl Catal A 270:165

    Article  CAS  Google Scholar 

  11. Föttinger K, van Bokhoven JA, Nachtegaal M, Rupprechter G (2011) J Phys Chem Lett 2:428

    Article  CAS  Google Scholar 

  12. Weilach C, Kozlov SM, Holzapfel HH, Föttinger K, Neyman KM, Rupprechter G (2012) J Phys Chem C 116:18768

    Article  CAS  Google Scholar 

  13. Stadlmayr W, Rameyan C, Weilach C, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Zemlyanov D, Penner S, Schlögl R, Rupprechter G, Klötzer B, Memmel N (2013) J Phys Chem C 114:10850

    Article  CAS  Google Scholar 

  14. Gallagher JR, Childers DJ, Zhao H, Winans RE, Meyer RJ, Miller JT (2015) Phys Chem Chem Phys 17:28144

    Article  CAS  PubMed  Google Scholar 

  15. Rameshan C, Weilach C, Stadlmayr W, Penner S, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schlögl R, Zemlyanov D, Memmel N, Rupprechter G, Klötzer B (2010) J Catal 276:101

    Article  CAS  Google Scholar 

  16. Barrios CE, Bosco MV, Baltanás MA, Bonivardi AL (2015) Appl Catal B 179:262

    Article  CAS  Google Scholar 

  17. Vecchietti MJ, Bonivardi AL, Xu W, Stacchiola D, Delgado JJ, Calatayud M, Collins SE (2014) ACS Catal 4:2088

    Article  CAS  Google Scholar 

  18. Föttinger K (2013) Catal Today 208:106

    Article  CAS  Google Scholar 

  19. Penner S, Jenewein B, Gabasch H, Klötzer B, Wang D, Knop-Gericke A, Schlögl R, Hayek K (2006) J Catal 241:14

    Article  CAS  Google Scholar 

  20. Tao FF, Ralston WT, Liu H, Somorjai GA (2018) J Phys Chem B 122:425

    Article  CAS  PubMed  Google Scholar 

  21. Barrios CE, Baltanás MA, Bolmaro R, Bonivardi AL (2014) Powder Technol 267:180

    Article  CAS  Google Scholar 

  22. Wagner CD, Riggs WN, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp., Eden Prairie

    Google Scholar 

  23. Iwasa N, Ogawa N, Masuda S, Takezawa N (1998) Bull Chem Soc Jpn 71:1451

    Article  CAS  Google Scholar 

  24. Iwasa N, Yoshikawa M, Nomura W, Arai M (2006) Appl Catal A 292:215

    Article  CAS  Google Scholar 

  25. Schön G (1973) J Electron Spectrosc Relat Phenom 2:75

    Article  Google Scholar 

  26. Antonides E, Janse EC, Sawatzky GA (1977) Phys Rev B 15:1669

    Article  CAS  Google Scholar 

  27. Badri A, Binet C, Lavalley JC (1996) J Phys Chem 100:8363

    Article  CAS  Google Scholar 

  28. Lear T, Marshall R, López-Sánchez JA, Jackson SD, Klapötke TM, Bäumer M, Rupprechter G, Freund H-J, Lennon D (2005) J Chem Phys 123:174706 1

    Article  CAS  Google Scholar 

  29. Cabilla GC, Bonivardi AL, Baltanás MA (1998) Catal Lett 55:147

    Article  CAS  Google Scholar 

  30. Blyholder G (1964) J Chem Phys 68:2772

    Article  CAS  Google Scholar 

  31. Gelin P, Siedle AR, Yates JT Jr (1984) J Phys Chem 88:2978

    Article  CAS  Google Scholar 

  32. Bernal S, Calvino JJ, Cauqui MA, Gatica JM, Larese C, Pérez-Omil JA, Pintado JM (1999) Catal Today 50:175

    Article  CAS  Google Scholar 

  33. Bernal S, Calvino JJ, Cifredo GA, Laachir A, Perrichon V, Herrmann JM (1994) Langmuir 10:717

    Article  CAS  Google Scholar 

  34. Kepinski L, Wolcyrz M (1997) Appl Catal A 150:197

    Article  CAS  Google Scholar 

  35. Peterson EJ, Halevi B, Kiefer B, Spilde MN, Datye AK, Peterson J, Daemen L, Llobet A, Nakotte H (2011) J Alloys Compd 509:1463

    Article  CAS  Google Scholar 

  36. Halevi B, Peterson EJ, de La Riva A, Jeroro E, Lebarbier VM, Wang Y, Vohs JM, Kiefer B, Kunkes E, Havecker M, Behrens M, Schögl R, Datye AK (2010) J Phys Chem C 114:17181

    Article  CAS  Google Scholar 

  37. Collins SE, Baltanás MA, Bonivardi AL (2008) J Mol Catal A 281:73

    Article  CAS  Google Scholar 

  38. Kou S, Chang YA (1975) Acta Metall 23:1185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support for this work from the ANPCyT of Argentina (PICT-2012-1280, PICT-2015-3651 and PME-2006-311) and Universidad Nacional del Litoral (CAID 2011 PI 50120110100311). C.B. thanks CONICET for the fellowship received to do this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian L. Bonivardi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 616 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrios, C.E., Baltanás, M.A., Bosco, M.V. et al. On the Surface Nature of Bimetallic PdZn Particles Supported on a ZnO–CeO2 Nanocomposite for the Methanol Steam Reforming Reaction. Catal Lett 148, 2233–2246 (2018). https://doi.org/10.1007/s10562-018-2441-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2441-1

Keywords

Navigation