Skip to main content
Log in

Catalytic Activity of Crystallographically Characterized Organic–Inorganic Hybrid Containing 1,5-Di-amino-pentane Tetrachloro Manganate with Perovskite Type Structure

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Layered 2D organic–inorganic hybrid perovskite (OIHS) of the diammonium series, 1,5 di-aminepentane tetrachloro mangenate ([NH3–(CH2)5–NH3] MnCl4) was prepared by slow evaporation and reducing temperature method and characterized by single crystal X-ray diffraction analysis. Its structure consists of organic cation, [NH3(CH2)5NH3]+2 extended in a zigzag fashion and inorganic anion, [MnCl6]−2 where Mn2+ is coordinated by six Cl ion in octahedral fashion. The organic and inorganic segments are alternately stacked along c-axis where inorganic layer is extended through corner-shared octahedra sandwiched by the di-aminopentane molecules. The layers (organic and inorganic) were connected to each other through N–H···Cl hydrogen bonds and van-der Waals interaction to build cation–anion–cation cohesion. The hybrid crystal had orthorhombic non-centrosymetric system having I212121 space group with unit cell parameters a = 7.1742(3) Å, b = 7.3817(3) Å, c = 23.9650(10) Å, V = 1269.13 Å3 and Z = 4. The hybrid exhibited excellent catalytic activity towards sulphide and alkene oxidation using aqueous H2O2 as an oxidant.

Graphical Abstract

OIHS of the diammonium series [NH3–(CH2)5–NH3] MnCl4; 1,5 di-aminepentane tetrachloro mangenate were prepared by slow evaporation and temperature decrease method, characterized by single crystal X-ray diffraction. This complex exhibits excellent catalytic activity towards sulphide oxidation and alkene oxidation using aqueous H2O2 as an oxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Abdel-Aal SK, Abdel-Rahman AS (2017) J Cryst Growth 457:282

    Article  CAS  Google Scholar 

  2. Mostafa MF, Abdel-Aal SK, Tammam AK (2014) Ind J Phys 88(1):49

    Article  CAS  Google Scholar 

  3. Mostafa MF, El-khiyami SS, Abdel-Aal SK (2017) J Mol Struct 1127:59

    Article  CAS  Google Scholar 

  4. Abdel-Aal SK (2017) Solid State Ionics 303:29

    Article  CAS  Google Scholar 

  5. Pradeesh K, Baumberg JJ, Vijaya Prakash G (2009) Appl Phys Lett 95(3):033309

    Article  Google Scholar 

  6. Pradeesh K, Yadav GS, Singh M, Vijaya Prakash G (2010) Mater Chem Phys 124(1):44

    Article  CAS  Google Scholar 

  7. Wei Y, Audebert P, Galmiche L, Lauret JS, Deleporte E, (2014) Materials 7(6):4789

    Article  Google Scholar 

  8. Mitzi DB (2001) Dalton Trans 1:1

    Article  Google Scholar 

  9. González-Carrero S, Galian RE, Pérez-Prieto J, (2015) Part Syst Charact 32(7):709

    Article  Google Scholar 

  10. Maris T, Bravic G, Chanh NB, Leger JM, Bissey JC, Villesuzanne A, Zouari R, Daoud A, (1996) J Phys Chem Solids 57(12):1963.

    Article  CAS  Google Scholar 

  11. Drabowicz J, Kielbsinski P, Mikolajczyk M, Patai S, Rappoport Z, Stirling C (eds) (1988) The chemistry of sulphone and sulphoxide. Wiley, New York

    Google Scholar 

  12. Frenanez I, Khiar N (2003) Chem Rev 103:3651

    Article  Google Scholar 

  13. Romanelli GP, Vázquez PG, Tundo P (2005) Synlett 1:75

    Google Scholar 

  14. Kaczorowska K, Kolarska Z, Mitka K, Kowalski P (2005) Tetrahedron 61:8315

    Article  CAS  Google Scholar 

  15. Bahrami K (2006) Tetrahedron Lett 47:2009

    Article  CAS  Google Scholar 

  16. Lane BS, Burgess K (2003) Chem Rev 103:2457

    Article  CAS  Google Scholar 

  17. Venkat-Reddy C, Verkade JG (2007) J Mol Catal A 272:233

    Article  CAS  Google Scholar 

  18. Jeyakumar K, Chand DK (2006) Tetrahedron Lett 47:4573

    Article  CAS  Google Scholar 

  19. Kirihara M, Yamamoto J, Noguchi T, Hirai Y (2009) Tetrahedron Lett 50:1180

    Article  CAS  Google Scholar 

  20. Choudary BM, Bharathi B, Reddy CV, Kantam ML, (2002) J Chem Soc Perkin Trans 1:2069

    Article  Google Scholar 

  21. Shaabani A, Rezayan AH (2007) Catal Commun 8:1112

    Article  CAS  Google Scholar 

  22. Fredrich B, Gerhartz W (eds.) (1985) Ullmann’s encyclopedia of industrial chemistry, vol 3 Wiley, Weinheim, New York, p. 470

    Google Scholar 

  23. Kroschwitz JI, Othmer K (1992) Encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  24. Ullmann F (2003) Ullmanns encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  25. Otwinowski Z, Minor W, Carter CW, Jr., Sweet RM (ed) (1997) Cell refinement: HKL scalepack. in: Methods in enzymology, vol 276 Publishing Academic Press, New York, p 30

  26. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M, (1994) J Appl Cryst 27:435.

    Google Scholar 

  27. Mackay S, Gilmore CJ, Edwards C, Stewart N, Shankland K, maXus Computer Program for the Solution and Refinement of crystal Structures. Bruker Nonius, The Netherlands, MacScience, Japan and The University of Glasgow (1999).

  28. Blessing RH, (1995) Acta Cryst A 51:33.

    Article  Google Scholar 

  29. Johnson CK, ORTEP–II (1976) A fortran thermal-ellipsoid plot program, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee. USA

  30. Dhara K, Sarkar K, Srimani D, Saha SK, Chattopadhay P, Bhaumik A (2010) Dalton Trans 39:6395

    Article  CAS  Google Scholar 

  31. Nandi M, Roy P, Uyama H, Bhaumik A (2011) Dalton Trans 40:12510

    Article  CAS  Google Scholar 

  32. Paul L Banerjee B, Bhaumik A, Ali M, (2016) J Solid State Chem 237:105

    Article  Google Scholar 

Download references

Acknowledgements

P.M. is thankful to the University Grant Commission (UGC) for funding in the form of Dr. D.S. Kothari post-doctoral research fellowship (Award no. F4-2/2006 (BSR)/CH/15–16/023). We sincerely thank Department of Chemistry of the University of Burdwan for infrastructural facilities. S.M.I. acknowledges the Council of Scientific and Industrial research, (CSIR, project reference no. 02(0284)/16/EMR-II), New Delhi, Govt. India, and Department of Science and Technology, Govt. of West Bengal (DST-W.B.), Project Reference Number 811(Sanc.) /ST/P/S&T/4G-8/2014, dated: 04/01/2016, for funding. We acknowledge Department of Science and Technology (DST) and University Grant Commission (UGC) New Delhi, India for providing support to the Department of Chemistry, University of Kalyani under PURSE, FIST and SAP program. S. K. A. is grateful to the financial support of Faculty of Science, Cairo University, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seham Kamal Abdel-Aal, Debasis Das or Sk Manirul Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, P., Abdel-Aal, S.K., Das, D. et al. Catalytic Activity of Crystallographically Characterized Organic–Inorganic Hybrid Containing 1,5-Di-amino-pentane Tetrachloro Manganate with Perovskite Type Structure. Catal Lett 147, 2332–2339 (2017). https://doi.org/10.1007/s10562-017-2112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2112-7

Keywords

Navigation