Skip to main content
Log in

Facile pH-Dependent Synthesis and Characterization of Catechol Stabilized Silver Nanoparticles for Catalytic Reduction of 4-Nitrophenol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalysis by silver nanoparticles (Ag-NPs) in organic transformations has received growing attention due to their unique reactivity and selectivity. Herein, we investigated a versatile one-step approach for synthesizing thermally stable AgNPs using catechol (1,2-benzenediol) without additional reducing and stabilizing agents in aqueous solution. In an alkaline environment, oxidation of catechol played a dual role in the reduction of silver ions (Ag+) and stabilization of the AgNPs. Nanoparticles with different size and morphology were obtained under different experimental conditions. X-ray diffraction (XRD) analysis suggests the formation of crystalline AgNPs of average size 13, 38 and 47 nm and face centered cubic structure as the reaction pH varied. As demonstrated in dynamic light scattering (DLS) and scanning electron microscopy (SEM) images, AgNPs with uniform size distribution (50 nm) were synthesized at pH 11. The nanoparticles are thermally stable with a steady loss of weight up to 800 °C as confirmed by thermogravimetric analysis (TGA). Comparing to AgNPs@pH5 and AgNPs@pH8, AgNPs synthesized at pH 11 have shown significant catalytic activity in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with 61% conversion at 20 °C. The results suggested that stable and monodisperse nanoparticles with tunable catalytic activity could be produced as the pH of the reaction was altered.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baruah B, Gabriel GJ, Akbashev MJ, Booher ME (2013) Langmuir 29:4225–4234

    Article  CAS  Google Scholar 

  2. Takale BS, Bao M, Yamamoto Y (2014) Org Biomol Chem 12:2005–2027

    Article  CAS  Google Scholar 

  3. Zhang Y, Diao W, Monnier JR, Williams CT (2015) Catal Sci Technol 5:4123–4132

    Article  CAS  Google Scholar 

  4. Lu Z, Zhang X, Li Z, Wu Z, Song J, Li C (2015) Polym Chem 6:772–779

    Article  CAS  Google Scholar 

  5. Sharma VK, Yngard RA, Lin Y (2009) Adv Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  6. Dallas P, Sharma VK, Zboril R (2011) Adv Colloid Interface Sci 166:119–135

    Article  CAS  Google Scholar 

  7. Nigra MM, Ha J-M, Katz A (2013) Catal Sci Technol 3:2976–2983

    Article  CAS  Google Scholar 

  8. Dong Z, Le X, Li X, Zhang W, Dong C, Ma J (2014) Appl Catal B 158:129–135

    Article  Google Scholar 

  9. Ciganda R, Li N, Deraedt C, Gatard S, Zhao P, Salmon L, Hernandez R, Ruiz J, Astruc D (2014) ChemCommun 50:10126–10129

    CAS  Google Scholar 

  10. Holden MS, Nick KE, Hall M, Milligan JR, Chen Q, Perry CC (2014) RSC Adv 4:52279–52288

    Article  CAS  Google Scholar 

  11. Shin KS, Choi J-Y, Park CS, Jang HJ, Kim K (2009) Catal Lett 133:1–7

    Article  CAS  Google Scholar 

  12. Vadakkekara R, Chakraborty M, Parikh PA (2014) Colloid J 76:12–18

    Article  CAS  Google Scholar 

  13. Sharma M, Sarma PJ, Goswami MJ, Bania KK (2017) J Colloid Interface Sci 490:529–541

    Article  CAS  Google Scholar 

  14. Geng Q, Du J (2014) RSC Adv 4:16425–16428

    Article  CAS  Google Scholar 

  15. Choi Y, Choi M-J, Cha S-H, Kim YS, Cho S and Park Y (2014) Nanoscale Res Lett 9:1–8

    Article  Google Scholar 

  16. Eising R, Elias WC, Albuquerque BL, Fort S, Domingos JB (2014) Langmuir 30:6011–6020

    Article  CAS  Google Scholar 

  17. Sun YG, Xia YN (2002) SCIENCE 298:2176–2179

    Article  CAS  Google Scholar 

  18. Zhang Q, Xie J, Yu Y, Lee JY (2010) Nanoscale 2:1962–1975

    Article  CAS  Google Scholar 

  19. Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS (2010) Nanoscale 2:763–770

    Article  CAS  Google Scholar 

  20. Kouvaris P, Delimitis A, Zaspalis V, Papadopoulos D, Tsipas SA, Michailidis N (2012) Mater Lett 76:18–20

    Article  CAS  Google Scholar 

  21. Hebbalalu D, Lalley J, Nadagouda MN, Varma RS (2013) ACS Sustainable Chem Eng 1:703–712

    Article  CAS  Google Scholar 

  22. Navaladian S, Viswanathan B, Viswanath RP, Varadarajan TK (2007) Nanoscale Res Lett 2:44–48

    Article  CAS  Google Scholar 

  23. Lee Y, Park TG (2011) Langmuir 27:2965–2971

    Article  CAS  Google Scholar 

  24. Adil SF, Assal ME, Khan M, Al-Warthan A, Siddiqui MRH, Liz-Marzan LM (2015) Dalton Trans, 44:9709–9717

    Article  CAS  Google Scholar 

  25. Metz KM, Sanders SE, Pender JP, Dix MR, Hinds DT, Quinn SJ, Ward AD, Duffy P, Cullen RJ, Colavita PE (2015) ACS Sustainable Chem Eng, 3:1610–1617

    Article  CAS  Google Scholar 

  26. Liu J, Qin G, Raveendran P, Ikushima Y (2006) Chem Euro J, 12:2131–2138

    Article  CAS  Google Scholar 

  27. Huang HZ, Yang XR (2004) Biomacromolecules 5:2340–2346

    Article  CAS  Google Scholar 

  28. Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV (2006) Carbohydr Res 341:2012–2018

    Article  CAS  Google Scholar 

  29. Murugadoss A, Kai N, Sakurai H (2012) Nanoscale 4:1280–1282

    Article  CAS  Google Scholar 

  30. Kalwar NH, Nafady A, Soomro RA, Sirajuddin, Sherazi STH, Khaskheli AR, Hallam KR (2015) Rare Met 34:683–691

    Article  CAS  Google Scholar 

  31. Ma Y-r, Niu H-y, Zhang X-l and Cai Y-q (2011) Chem Commun 47:12643–12645

    Article  CAS  Google Scholar 

  32. Marcelo G, Fernandez-Garcia M (2014) RSC Adv 4:11740–11749

    Article  CAS  Google Scholar 

  33. Wu J, Zhang L, Wang Y, Long Y, Gao H, Zhang X, Zhao N, Cai Y, Xu J (2011) Langmuir 27:13684–13691

    Article  CAS  Google Scholar 

  34. Black KCL, Liu Z, Messersmith PB (2011) Chem Mater 23:1130–1135

    Article  CAS  Google Scholar 

  35. Sedo J, Saiz-Poseu J, Busque F, Ruiz-Molina D (2013) Adv Mater 25:653–701

    Article  CAS  Google Scholar 

  36. Roy AK, Park SY and In I(2015) Nanotechnology 26:105601

    Article  Google Scholar 

  37. Li M, Chen G (2013) Nanoscale 5:11919–11927

    Article  CAS  Google Scholar 

  38. Marcelo G, Lopez-Gonzalez M, Mendicuti F, Pilar Tarazona M and Valiente M (2014) Macromolecules 47:6028–6036

    Article  CAS  Google Scholar 

  39. Xu H, Nishida J, Ma W, Wu H, Kobayashi M, Otsuka H, Takahara A (2012) ACS Macro Lett 1:457–460

    Article  CAS  Google Scholar 

  40. Lin Q, Li Q, Batchelor-McAuley C, Compton RG (2015) J Phys Chem C 119:1489–1495

    Article  CAS  Google Scholar 

  41. Soni SS, Vekariya RL, Aswal VK (2013) RSC Adv 3:8398–8406

    Article  CAS  Google Scholar 

  42. Bleach R, Karagoz B, Prakash SM, Davis TP, Boyer C (2014) ACS Macro Lett 3:591–596

    Article  CAS  Google Scholar 

  43. Fullenkamp DE, Barrett DG, Miller DR, Kurutz JW, Messersmith PB (2014) RSC Adv 4:25127–25134

    Article  CAS  Google Scholar 

  44. Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, Szmaja W, Grobelny J (2013) J Nanomater. doi:10.1155/2013/313081.

    Google Scholar 

  45. Celen B, Ekiz D, Piskin E, Demirel G (2011) J Mol Catal A 350:97–102

    Article  CAS  Google Scholar 

  46. Pandey S, Mishra SB (2014) Carbohydr Polym 113:525–531

    Article  CAS  Google Scholar 

  47. Liang M, Su R, Huang R, Qi W, Yu Y, Wang L, He Z (2014) ACS Appl Mater Interfaces 6:4638–4649

    Article  CAS  Google Scholar 

  48. Cong Y, Xia T, Zou M, Li Z, Peng B, Guo D, Deng Z (2014) J Mater Chem B 2:3450–3461

    Article  CAS  Google Scholar 

  49. Tang J, Shi Z, Berry RM, Tam KC (2015) Ind Eng Chem Res 54:3299–3308

    Article  CAS  Google Scholar 

  50. Dong X-Y, Gao Z-W, Yang K-F, Zhang W-Q, Xu L-W (2015) Catal Sci Technol 5:2554–2574

    Article  CAS  Google Scholar 

  51. Kaestner C, Thuenemann AF (2016) Langmuir 32:7383–7391

    Article  CAS  Google Scholar 

  52. Santos Kdo, Elias WC, Signori AM, Giacomelli FC, Yang H, Domingos JB (2012) J Phys Chem C 116:4594–4604

    Article  CAS  Google Scholar 

  53. Mata R, Nakkala JR, Sadras SR (2015) Mater Sci Eng C 51:216–225

    Article  CAS  Google Scholar 

  54. Wunder S, Lu Y, Albrecht M, Ballauff M (2011) ACS Catal 1:908–916

    Article  CAS  Google Scholar 

  55. Ahmad A, Wei Y, Syed F, Imran M, Khan ZU, Tahir K, Khan AU, Raza M, Khan Q, Yuan QP (2015) RSC Adv 5:99364–99377

    Article  CAS  Google Scholar 

  56. Gangula A, Podila R, Ramakrishna M, Karanam L, Janardhana C, Rao AM (2011) Langmuir 27:15268–15274

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (U1463201, 21522604), Natural Science Foundation of Jiangsu Province, China (BK20150031), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) are gratefully ackowleged for funding this work. We would like to thank Prof. He Huang (Nanjing Tech University) for providing access to UV–Vis spectrophotometer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenjiang Li or Kai Guo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 722 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebru, H., Cui, S., Li, Z. et al. Facile pH-Dependent Synthesis and Characterization of Catechol Stabilized Silver Nanoparticles for Catalytic Reduction of 4-Nitrophenol. Catal Lett 147, 2134–2143 (2017). https://doi.org/10.1007/s10562-017-2100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2100-y

Keywords

Navigation