Skip to main content
Log in

Dehydration of Glucose to 5-Hydroxymethylfurfural Using LaOCl/Nb2O5 Catalysts in Hot Compressed Water Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The dehydration of fructose and glucose to 5-hydroxymethylfurfural was studied using LaOCl/Nb2O5 in hot compressed water conditions. The catalysts were prepared by impregnation of LaCl3 on Nb2O5 with different loadings. The solids were characterized by EDX, XRD, TGA and N2 physisorption at 77 K and pyridine and CO2 adsorption followed by FTIR; the strength of acidity and basicity was determined by NH3-TPD and CO2-TPD, respectively. The use of acid–base systems for HMF production mainly from glucose requires weak basic sites and moderate acidity condition that is reached with LaOCl/Nb2O5 as was confirmed by acidity and basicity analyses. The presence of Nb2O5 increase HMF yield (>50%) and prevented the formation of undesirable products in hot compressed water conditions, similar results could be obtained with DMSO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) Green Chem 13:754

    Article  CAS  Google Scholar 

  2. Yang G, Pidko EA, Hensen EJM (2012) J Catal 295:122–132

    Article  CAS  Google Scholar 

  3. Wang J, Xu W, Ren J, Liu G, Wang Y (2011) Green Chem 13:2678

    Article  CAS  Google Scholar 

  4. Yang F, Liu Q, Yue M, Bai X, Du Y (2011) Chem Commun 47:4469–4471

    Article  CAS  Google Scholar 

  5. Tao F, Zhuang C, Cui Y, Xu J (2014) Chin Chem Lett 25:757–761

    Article  CAS  Google Scholar 

  6. Yan H, Yang Y, Tong D, Xiang X, Hu C (2009) Catal Commun 10:1558–1563

    Article  CAS  Google Scholar 

  7. Dunn EF, Liu DDJ, Chen EY (2013) Appl Catal A 460–461:1–7

    Article  Google Scholar 

  8. Siqueira BG, Silva MAP, Moraes C (2013) Braz J Pet Gas 7:71–82

    Article  Google Scholar 

  9. Wang F, Wu HZ, Liu CL, Yang RZ, Dong WS (2013) Carbohydr Res 368:78–83

    Article  CAS  Google Scholar 

  10. Yang F, Liu Q, Bai X, Du Y (2011) Bioresour Technol 102:3424–3429

    Article  CAS  Google Scholar 

  11. Carniti P, Gervasini A, Biella S, Auroux A (2006) Catal Today 118:373–378

    Article  CAS  Google Scholar 

  12. Yue C, Li G, Pidko EA, Wiesfeld JJ, Rigutto M, Hensen EJM (2016) ChemSusChem 17:2421–2429

    Article  Google Scholar 

  13. Jiao H, Zhao X, Lv C, Wang Y, Yang D, Li Z, Yao X (2016) Sci Rep 6:1–9

    Article  Google Scholar 

  14. Huang Z, Pan W, Zhou H, Qin F, Xu H, Shen W (2013) ChemSusChem 6:1063–1069

    Article  CAS  Google Scholar 

  15. Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K, Inomata H (2005) Carbohydr Res 340:1925–1930

    Article  CAS  Google Scholar 

  16. Nayara T, Souza TE, Rodrigues A, Machado T, Souza PP, Monteiro RS (2016) J Mol Catal A 422:23–34

    Article  Google Scholar 

  17. Marsal A, Rossinyol E, Bimbela F, Télelz C, Coronas J, Cornet A, Morante JR (2005) Sens Actuators B 109:38–40

    Article  CAS  Google Scholar 

  18. Rojas HA, Borda G, Valencia JS, Martínez JJ, Reyes P (2005) Rev Colomb Quím 34:127–138

    Google Scholar 

  19. Murayama T, Chen J, Hirata J, Matsumoto K, Ueda W (2014) Catal Sci Technol 4:4250–4257

    Article  CAS  Google Scholar 

  20. Kitano T, Shishido T, Teramura K, Tanaka T (2012) J Phys Chem C 116:11615–11625

    Article  CAS  Google Scholar 

  21. Ohuchi T, Miyatake T, Hitomi Y, Tanaka T (2007) Catal Today 120:233–239

    Article  CAS  Google Scholar 

  22. Bennici S, Raki V (2012) Catal Today 192:160–168

    Article  Google Scholar 

  23. Datka J, Turek AM, Jehng JM, Wachs IE (1992) J Catal 135:186–199

    Article  CAS  Google Scholar 

  24. Iizuka T, Ogasawara K, Tanabe K (1983) Bull Chem Soc Jpn 56:2927–2931

    Article  CAS  Google Scholar 

  25. Rangel MDC, Monteiro APDM, Marchetti SG et al (2014) J Mol Catal A 387:147–155

    Article  CAS  Google Scholar 

  26. Liu Q, Wang L, Wang C, Qu W, Tian Z, Ma H, Wang D, Wang B, Xu Z (2013) Appl Catal B 136–137:210–217

    Article  Google Scholar 

  27. Shen SC, Chen X, Kawi S (2004) Langmuir 20:9130–9137

    Article  CAS  Google Scholar 

  28. Manoilova OV, Podkolzin SG, Tope B, Lercher J, Stangland EE, Goupil J, Weckhuysen BM (2004) J Chem Phys B 108:15770–15781

    Article  CAS  Google Scholar 

  29. Zhang J, He D (2014) J Colloid Interface Sci 419:31–38

    Article  CAS  Google Scholar 

  30. Do Prado NT, Souza TE, Machado ART, Souza PP, Monteiro RS, Oliveira LCA (2016) J Mol Catal A 422:23–34

    Article  Google Scholar 

  31. Hu L, Wu Z, Xu J, Sun Y, Lin L, Liu S (2014) Chem Eng J 244:137–144

    Article  CAS  Google Scholar 

  32. Hu L, Sun Y, Lin L (2012) Ind Eng Chem Res 51:1099–1104

    Article  CAS  Google Scholar 

  33. Ohara M, Takagaki A, Nishimura S, Ebitani K (2010) Appl Catal A 383:149–155

    Article  CAS  Google Scholar 

  34. Zhang Y, Wang J, Li X, Liu X, Xia Y, Hu B, Lu G, Wang Y (2015) Fuel 139:301–307

    Article  CAS  Google Scholar 

  35. Jiménez-Morales I, Santamaría-González J, Jiménez-López A, Maireles-Torres P (2014) Fuel 118:265–271

    Article  Google Scholar 

  36. Jiménez-Morales I, Moreno-Recio M, Santamaría-González J, Maireles-Torres P, Jimenez-López A (2014) Appl Catal B 154–155:190–196

    Article  Google Scholar 

  37. Rasmussen H, Sørensen HR, Meyer AS (2014) Carbohydr Res 385:45–57

    Article  CAS  Google Scholar 

  38. Nakajima K, Baba Y, Noma R, Kitano M, Kondo J, Hayashi S, Hara M (2011) J Am Chem Soc 133:4224

    Article  CAS  Google Scholar 

  39. Jehng J-M, Wachs IE (1991) Chem Mater 3:100–107

    Article  CAS  Google Scholar 

  40. Hara M (2014) Bull Chem Soc Jpn 87:931–941

    Article  CAS  Google Scholar 

  41. Wachs IE, Roberts CA (2010) Chem Soc Rev 39:5002–5017

    Article  CAS  Google Scholar 

  42. Van Putten R, Van Der Waal JC, De Jong E et al (2013) Chem Rev 113:1499–1597

    Article  Google Scholar 

  43. Qi X, Watanabe M, Aida TM, Smith RL (2010) Green Chem 12:1855–1860

    Article  CAS  Google Scholar 

  44. Shimizu K, Uozumi R, Satsuma A (2009) Catal Commun 10:1849–1853

    Article  CAS  Google Scholar 

  45. Jain A, Shore AM, Jonnalagadda SC, Ramanujachary KV, Mugweru A (2015) Appl Catal A 489:72–76

    Article  CAS  Google Scholar 

  46. Alam MI, De S, Singh B, Saha B, Abu-Omar MM (2014) Appl Catal A 486:42–48

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank COLCIENCIAS for the financial support under Project No. 110965843004. FBP and MHB thank FAPERJ and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José J. Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, J.J., Silva, D.F., Aguilera, E.X. et al. Dehydration of Glucose to 5-Hydroxymethylfurfural Using LaOCl/Nb2O5 Catalysts in Hot Compressed Water Conditions. Catal Lett 147, 1765–1774 (2017). https://doi.org/10.1007/s10562-017-2064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2064-y

Keywords

Navigation