Skip to main content
Log in

Recombinant Thermostable Thermomonospora fusca TF Endo-xylanase A and Its Immobilization on Modified Mesoporous SiO2 Microspheres for Manufacturing Xylooligosaccharides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

tfxa (GenBank: U01242), which encoded the mature peptide of Thermomonospora fusca TF xylanase A (TfxA), was high-level expressed in Escherichia coli BL21 (DE3). The recombinant xylanase, reETfxA, was both secreted into culture medium and in the cytoplasm. reETfxA showed high xylanase activity and was purified to homogeneity by Ni-affinity resin (182.8 and 681.4 U mg−1 for crude and purified enzyme, respectively). Sodium dodecyl sulphate–polyacrylamide gel electrophoresis and Western blot analysis revealed that the molecular mass of reETfxA was approximately 42.7 kDa. The reETfxA was immobilized on a novel mesoporous SiO2 microsphere (MSM)-coated chitosan via covalent bonds, which formed from Schiff base reaction between supports and enzyme. The binding capacity of the prepared MSM-coated chitosan particles to reETfxA was approximately 272.6 mg g−1-particles. The optimum temperature values of the free and immobilized reETfxA were 65 and 70 °C, respectively. Moreover, the optimum pH values of the free and immobilized reETfxA were pH 6.0 and 5.0, respectively. The reETfxA showed relatively high thermostability. When treated at 70 °C and pH 6.0 for 15 min, the residual activities of free and immobilized reETfxA were 84.2 and 100.2%, respectively. The results obtained from the HPLC analysis showed that immobilized reETfxA released xylooligosaccharides from oat spelt, beechwood and birchwood xylans, with xylotetraose, xylotriose, and xylopentaose as the major products, respectively. Additionally, the immobilized reETfxA could directly hydrolyze the wheat bran insoluble xylan.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TfxA:

Thermomonospora fusca TF xylanase A

tfxa :

The gene the encoding mature peptide of TfxA

X1:

Xylose

X2:

Xylobiose

X3:

Xylotriose

X4:

Xylotetraose

X5:

Xylopentaose

HPLC:

High–performance liquid chromatography

XOs:

Xylooligosaccharides

\({{K}_{m}}\) :

Michaelis–Menten constants

\({{V}_{\max }}\) :

Maximal activity

MSM:

Mesoporous SiO2 microspheres

References

  1. Collins T, Gerday C, Feller G (2005) FEMS Microbiol Rev 19:3

    Article  Google Scholar 

  2. Henrissat B, Davies G (1997) Curr Opin Struc Biol 7:637

    Article  CAS  Google Scholar 

  3. Geonzález-Ortiz G, Olukosi O, Bedford MR (2016) Anim Nutr 2:173

    Article  Google Scholar 

  4. Milessi TSS, Kopp W, Rojas MJ, Manrich A, Baptista-Neto A, Tardioli PW, Giordano PC, Fernandez-Lafuente R, Guisan JM, Giordano RLC (2016) Catal Today 259:130

    Article  CAS  Google Scholar 

  5. Ribeiro LF, Lucas RCD, Vitcosque GL, Ribeiro LF, Ward RJ, Rubio MV, Damásio AR, Squina FM, Gregory RC, Walton PH, Jorge JA, Prade RA, Buckeridge MS, Polizeli MLTM (2014) Biotechnol Biofuels 7:115

    Article  Google Scholar 

  6. Siddiqui KS (2015) Biotechnol Adv 33:1912

    Article  CAS  Google Scholar 

  7. Sun JY, Liu MQ, Weng XY, Qian LC, Gu SH (2007) Food Chem 104:1055

    Article  CAS  Google Scholar 

  8. Tuncer M (2000) Turk J Biol 24:737

    CAS  Google Scholar 

  9. Wang Q, Du W, Weng XY, Liu MQ, Wang JK, Liu JX (2015) Appl Biochem Biotechnol 175:1318

    Article  CAS  Google Scholar 

  10. Irwin D, Jung ED, Wilson DB (1994) Appl Environ Microbiol 60:763

    CAS  Google Scholar 

  11. Ghangas GS, Hu YJ, Wilson DB (1989) J Bacteriol 171:2963

    Article  CAS  Google Scholar 

  12. Kulkarni N, Shendye A, Rao M (1999) FEMS Microbiol Rev 23:411

    Article  CAS  Google Scholar 

  13. Ansari SA, Husain A (2012) Biotechnol Adv 30:512

    Article  CAS  Google Scholar 

  14. Aragon CC, Santos AF, Ruiz-Matute AJ, Corzo N, Guisan JM, Monti R, Mateo C (2013) J Mol Catal B 98:8

    Article  CAS  Google Scholar 

  15. Sambrook J, Russel DW (2001) “Plasmids and their usefulness in molecular cloning”, In: Argentine J (ed) Molecular Cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  16. Miller GL, Blum R, Glennom WE, Burton AL (1959) Anal Biochem 2:127

    Google Scholar 

  17. Bradford MM (1976) Anal Biochem 72:248

    Article  CAS  Google Scholar 

  18. Laemmli UK (1976) Nature 227:680

    Article  Google Scholar 

  19. Xu X, Liu MQ, Huo WK, Dai XJ (2016) Enzym Microb Technol 86 59

    Article  CAS  Google Scholar 

  20. Chen GC, Li FB, Huang ZJ, Guo CY, Qiu XN, Qiao HB, Wang ZC, Ren SB, Jiang WF, Yuan GQ (2015) Fuel Process Technol 134:11

    Article  CAS  Google Scholar 

  21. Liu MQ, Dai XJ, Guan RF, Xu X (2014) Catal Commun 55:6

    Article  CAS  Google Scholar 

  22. Lei ZL, Bi SX (2007) Enzym Microb Technol 40:1442

    Article  CAS  Google Scholar 

  23. Tuncer M, Ball AS (2003) J Appl Microbiol 94:1030

    Article  CAS  Google Scholar 

  24. Jia HY, Fan GS, Yan QJ, Liu YC, Yuan Y, Jiang ZQ (2012) J Mol Catal B 78:72

    Article  CAS  Google Scholar 

  25. Kumar MNV (2000) React Funct Polym 46:1

    Article  CAS  Google Scholar 

  26. Krajewska B (2004) Enzym Microb Technol 35:126

  27. Liu MQ, Huo WK, Xu X, Jin DF (2015) J Mol Catal B 120:119

    Article  CAS  Google Scholar 

  28. Kimura I, Tajima S (1998) J Ferment Bioeng 85:283

  29. Karlsson EN, Dahlberg L, Torto N, Gorton L, Holst O (1998) J Biotechnol 60:23

    Article  CAS  Google Scholar 

  30. Kolenová K, Vršanská M, Biely P (2006) J Biotechnol 12:338

    Article  Google Scholar 

  31. Sun JY, Liu MQ, Weng XY (2008) Appl Biochem Biotechnol 152:8316

    Google Scholar 

  32. Liu MQ, Liu GF (2008) Protein Expr Purif 57:101

    Article  CAS  Google Scholar 

  33. Reddy SS, Krishnan C (2016) LWT-Food Sci Technol 65:237

    Article  CAS  Google Scholar 

  34. Xue JL, Zhao S, Liang RM, Yin X, Jiang SX, Su LH, Yang Q, Duan CJ, Liu JL, Feng JX (2016) Bioresour Technol 204:130

    Article  CAS  Google Scholar 

  35. Gowdhaman D, Ponnusami V (2015) Int J Biol Macromol 79:595

    Article  CAS  Google Scholar 

  36. Moure A, GullÓn P, DomÍnguez H, ParajÓ JC (2006) Process Biochem 41:1913

    Article  CAS  Google Scholar 

  37. Samanta AK, Jayapal N, Jayaram C, Roy S, Kolte AP, Senani S, Sridhar M (2015) Bioact Carbohyd Diet Fibre 5:62

    Article  CAS  Google Scholar 

  38. Yu XH, Yang RQ, Gu ZX, Lai SJ, Yang HS (2014) Bioresources 9:6778

    Google Scholar 

  39. Zampa A, Silvi S, Fabiani R, Morozzi G, Orpianesi C, Cresci A (2004) Anaerobe 10:19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y15C200013), the National Natural Science Foundation of China (Nos. 31672462, 31271632), and the grant of Science and Technology Department of Zhejiang Province (No. 2016C32086). We thank Dr. Shang-Wei Chen for his kind assistance in the HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-qi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Mq., Weng, Xy., Wang, Q. et al. Recombinant Thermostable Thermomonospora fusca TF Endo-xylanase A and Its Immobilization on Modified Mesoporous SiO2 Microspheres for Manufacturing Xylooligosaccharides. Catal Lett 147, 765–772 (2017). https://doi.org/10.1007/s10562-017-1979-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-1979-7

Keywords

Navigation