Skip to main content
Log in

Sodium Ion as the Most Essential and Effective Element for the Enantio-Differentiating Hydrogenation of Prochiral Ketones over Tartaric Acid Modified Ni Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In order to investigate the role of metal ions on a tartaric acid modified nickel catalyst, the enantio-differentiating hydrogenations of methyl acetoacetate and methyl levulinate were carried out. The effects of the addition of 17 metal salts of acetic acid on the enantio-selectivity and the hydrogenation rate were investigated during the hydrogenation of methyl acetoacetate. Among the examined metal salts, the addition of NaBr caused the great increase in the enantio-selectivity and the hydrogenation rate during the hydrogenations of both methyl acetoacetate and methyl levulinate. Based on the strength of the interaction between the metal salts of tartaric acid and the substrate, the sodium salts would have the strongest interaction with the substrate, hence, this would be attributed to the highest enantio-selectivity and hydrogenation rate for the sodium salts of tartaric acid.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vankelecom IFJ, Jacobs PA (2000) In: Vos DED, Vankelecom IFJ, Jacobs PA (eds) Chiral catalyst immobilization and recycling. Wiley-VCH, Weinheim, p 19

  2. Kragl U, Dwars T (2001) Trends Biotechnol 19:442–449

    Article  CAS  Google Scholar 

  3. Blaser H-U, Malan C, Pugin B, Spindler F, Steiner H, Studer M (2003) Adv Synth Catal 345:103–151

    Article  CAS  Google Scholar 

  4. Thomas JM, Raja R (2004) J Organomet Chem 689:4110–4124

    Article  CAS  Google Scholar 

  5. Blaser HU, Schmidt E (2004) Asymmetric catalysis on industrial scale: challenges, approaches and solutions. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  6. Kitamura M, Shirakawa S, Maruoka K (2005) Angew Chem Int Ed 44:1549–1551

    Article  CAS  Google Scholar 

  7. Bartok M (2010) Chem Rev 110:1663–1705

    Article  CAS  Google Scholar 

  8. Izumi Y (1983) Adv Catal 32:215–271

    CAS  Google Scholar 

  9. Tai A, Sugimura T (2000) In: Vos DED, Vankelecom IFJ, Jacobs PA (eds) Chiral catalyst immobilization and recycling. Wiley-VCH, Weinheim, p 173

  10. Murzin DY, Mäki-Arvela P, Toukoniitty E, Salmi T (2005) Catal Rev 47:175–256

    Article  CAS  Google Scholar 

  11. Osawa T, Harada T, Takayasu O (2006) Curr Org Chem 10:1513–1531

    Article  CAS  Google Scholar 

  12. Bartok M (2006) Curr Org Chem 10:1533–1567

    Article  CAS  Google Scholar 

  13. Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863–4890

    Article  CAS  Google Scholar 

  14. Studer M, Blaser H-U, Exner C (2003) Adv Synth Catal 345:45–65

    Article  CAS  Google Scholar 

  15. Yoon M, Srirambalaji R, Kim K (2012) Chem Rev 112:1196–1231

    Article  CAS  Google Scholar 

  16. Sugimura T (1999) Catal Surv Jpn 3:37–42

    Article  CAS  Google Scholar 

  17. Ding C, Wei W, Sun H, Ding J, Ren J, Qu X (2014) Carbon 79:615–622

    Article  CAS  Google Scholar 

  18. Osawa T, Harada T (1984) Bull Chem Soc Jpn 57:1518–1521

    Article  CAS  Google Scholar 

  19. López-Martínez A, Keane MA (2000) J Mol Catal A 153:257–266

    Article  Google Scholar 

  20. Nitta Y, Kawabe M, Imanaka T (1987) Appl Catal 30:141–149

    Article  CAS  Google Scholar 

  21. Keane MA (1994) Can J Chem 72:372–381

    Article  CAS  Google Scholar 

  22. Kukula P, Cerveny L (2001) Appl Catal A 210:237–246

    Article  CAS  Google Scholar 

  23. Harada T, Izumi Y (1978) Chem Lett 7:1195–1196

    Article  Google Scholar 

  24. Bostelaar LJ, Sachtler WMH (1984) J Mol Catal 27:387–395

    Article  CAS  Google Scholar 

  25. Chen H, Li R, Wang H, Liu J, Wang F, Ma J (2007) J Mol Catal A 269:125–132

    Article  CAS  Google Scholar 

  26. Harada T, Yamamoto M, Onaka S, Imaida M, Ozaki H, Tai A, Izumi Y (1981) Bull Chem Soc Jpn 54:2323–2329

    Article  CAS  Google Scholar 

  27. Tanabe T, Okuda K, Izumi Y (1973) Bull Chem Soc Jpn 46:514–517

    Article  CAS  Google Scholar 

  28. Osawa T, Sakai S, Deguchi K, Harada T, Takayasu O (2002) J Mol Catal A 185:65–69

    Article  CAS  Google Scholar 

  29. Osawa T, Harada T, Takayasu O (2000) Top Catal 13:155–168

    Article  CAS  Google Scholar 

  30. Osawa T, Sawada K, Harada T, Takayasu O (2004) Appl Catal A 264:33–36

    Article  CAS  Google Scholar 

  31. Osawa T, Ozawa A, Harada T, Takayasu O (2000) J Mol Catal A 154:271–275

    Article  CAS  Google Scholar 

  32. Kukula P, Cerveny L (2002) Appl Catal A 223:43–55

    Article  CAS  Google Scholar 

  33. Cai S, Ma K, Chen H, Zheng Y, Jiang J, Li R (2009) Catal Lett 128:227–234

    Article  CAS  Google Scholar 

  34. Rives A, Leclercq E, Hubaut R (1996) In: Malz RE Jr. (ed) Catalysis of organic reactions. Dekker, New York, pp 241–248

    Google Scholar 

  35. Osawa T, Hayashi Y, Ozawa A, Harada T, Takayasu O (2001) J Mol Catal A 169:289–293

    Article  CAS  Google Scholar 

  36. Osawa T, Ando M, Harada T, Takayasu O (2005) Bull Chem Soc Jpn 78:1371–1372

    Article  CAS  Google Scholar 

  37. Sugimura T, Nakagawa S, Kamata N, Tei T, Tajiri T, Tsukiyama R, Okuyama T, Okamoto Y (2015) Bull Chem Soc Jpn 88:271–276

    Article  Google Scholar 

  38. Hoek A, Sachtler WMH (1979) J Catal 58:276–286

    Article  CAS  Google Scholar 

  39. Kiabutnovskii BI, Vedenyapin AA, Karpeiskaya EI, Pavlov VA (1981) Stud Surf Sci Catal 7:390–401

    Article  Google Scholar 

  40. Yasumori I, Yokozeki M, Inoue Y (1981) Faraday Discuss Chem Soc 72:385–396

    Article  Google Scholar 

  41. Keane MA, Webb G (1991) J Chem Soc Chem Commun 22:1619–1621

    Article  Google Scholar 

  42. Leclercq E, Rives A, Payen E, Hubaut R (1998) Appl Catal A 168:279–288

    Article  CAS  Google Scholar 

  43. Humblot V, Haq S, Muryn C, Hofer WA, Raval R (2002) J Am Chem Soc 124:503–510

    Article  CAS  Google Scholar 

  44. Jones TE, Baddeley CJ (2002) Surf Sci 519:237–249

    Article  CAS  Google Scholar 

  45. Slater JC (1930) Phys Rev 36:57–64

    Article  CAS  Google Scholar 

  46. Mann JB (1968) Atomic structure calculations II. Hartree-Fock wave functions and radial expectation values: hydrogen to lawrencium, LA-3691. Los Alamos Scientific Laboratory

  47. Clementi E, Raimondi DL (1963) J Chem Phys 38:2686–2689

    Article  CAS  Google Scholar 

  48. Clementi E, Raimondi DL, Reinhardt WP (1967) J Chem Phys 47:1300–1307

    Article  CAS  Google Scholar 

  49. Skaarup S, Jafeen MJM, Careem MA (2010) Solid State Ionics 181:1245–1250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor emeritus Tadao Harada (Ryukoku University) for his valuable discussions and advice throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Osawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osawa, T., Tanabe, Y. & Fujiwara, M. Sodium Ion as the Most Essential and Effective Element for the Enantio-Differentiating Hydrogenation of Prochiral Ketones over Tartaric Acid Modified Ni Catalyst. Catal Lett 147, 686–692 (2017). https://doi.org/10.1007/s10562-017-1968-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-1968-x

Keywords

Navigation