Skip to main content
Log in

Factors Associated with Accurate Analysis of Fischer–Tropsch Products

  • Published:
Catalysis Letters Aims and scope Submit manuscript

A Correction to this article was published on 14 July 2018

This article has been updated

Abstract

Accurate analysis of Fischer–Tropsch (FT) products is very important for reaction mechanism and kinetics studies. However, it is rather complex since many factors in collecting, measurement and GC analysis have influences on the results. These factors should be considered in research to avoid possible artifacts. In this paper, some issues and considerations in FT products analysis were discussed. To obtain reliable results, it is recommended to collect samples after the steady state of the reaction reached without further catalyst reconstruction and net products accumulation. Products collection fraction should be in acceptable range besides commonly calculated balances. The physical separation of different phases of products should be as complete as possible and the identification of different products in GC analysis should be checked carefully.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 14 July 2018

    The authors regret that a certain error in their manuscript was not find in time during manuscipt proof, which might puzzle readers. The corrected section now appear here.

Notes

  1. Oxygenates in encapsulated aqueous would change the weight percentage of wax \({x}_{w}^{i}\) to \({x}_{w}^{{\prime}i}\), and the weight of a product become to:\({w^{\prime} }_{ole}^i = x_{ole,g}^i{W_g} + x_{ole,o}^i{W_o} + x_{ole,w}^{\prime i}({W_w} + \Delta W)\).\(= w_{ole}^i + [\left( {x_{ole,w}^{\prime i} - x_{ole,w}^i} \right){W_w} + x_{ole,w}^{\prime i}\Delta W]\).\({w^{\prime _{para}^i}} = x_{para,g}^i{W_g} + x_{para,o}^i{W_o} + x_{para,w}^{\prime i}\left( {{W_w} + \Delta W} \right) = w_{para}^i + [\left( {x_{para,w}^i - x_{para,w}^i} \right){W_w} + x_{para,w}^{\prime i}\Delta W]\).\({w^{\prime} }_{oxy}^i = x_{oxy,a}^i({W_a} - \Delta W) + x_{oxy,o}^i{W_o} + x_{oxy,w}^{\prime i}({W_w} + \Delta W) = w_{oxy}^i + [(x_{oxy,w}^{\prime i} - x_{oxy,w}^i){W_w} + (x_{oxy,w}^{\prime i} - x_{oxy,a}^i)\Delta W]\).However, the amount of oxygenates in encapsulated aqueous is minor compared to wax, and in most cases little difference between \({x}_{w}^{i}\) and \({x}_{w}^{{{\prime}}i}\) can be observed, and using \({x}_{w}^{i}\) instead of \({x}_{w}^{{{\prime}}i}\) as the weight percentage when encapsulated aqueous can only induce negligible error in weight calculation. Here, to simplify the discussion, we use \({x}_{w}^{i}\) as the weight percentage in the following discussion.

References

  1. Storch HH, Golumbic N, Anderson RB (1951) The Fischer–Tropsch and related synthesis. Wiley, New York

    Google Scholar 

  2. Anderson RB, Kolbel H, Ralek M (1984) The Fischer–Tropsch synthesis. Academic Press, Orlando

    Google Scholar 

  3. Steynberg AP, Dry ME (2004) Fischer–Tropsch technology. Elsevier, Boston

    Google Scholar 

  4. Schulz H (2003) Top Catal 26:73–85

    Article  CAS  Google Scholar 

  5. Botes FG (2008) Catal Rev 50:471–491

    Article  CAS  Google Scholar 

  6. Dalai AK, Davis BH (2008) Appl Catal A 348:1–15

    Article  CAS  Google Scholar 

  7. Davis BH (2009) Catal Today 141: 25–33

    Article  CAS  Google Scholar 

  8. Tsakoumis NE, Ronning M, Borg O, Rytter E, Holmen A (2010) Catal Today 154: 162–182

    Article  CAS  Google Scholar 

  9. Sage V, Burke N (2011) Catal Today 178: 137–141

    Article  CAS  Google Scholar 

  10. Shetty S, van Santen RA (2011) Catal Today 171: 168–173

    Article  CAS  Google Scholar 

  11. Gual A, Godard C, Castillón S, Curulla-Ferré D, Claver C (2012) Catal Today 183: 154–171

    Article  CAS  Google Scholar 

  12. Fan GX, Li Y, Yang JL, Xu YY, Xiang HW, Li YW (2007) Chin J Anal Chem 35:1092–1098

    Article  CAS  Google Scholar 

  13. Andersson R, Boutonnet M, Järås S (2012) J Chromatogr A 1247:134–145

    Article  CAS  PubMed  Google Scholar 

  14. Donnelly TJ, Satterfield CN (1989) Appl Catal 56: 231–251

    Article  CAS  Google Scholar 

  15. Shi BC, Davis BH (2004) Appl Catal A 277:61–69

    Article  CAS  Google Scholar 

  16. Liu Y, Zheng S, Shi B, Li J (2007) J Mol Catal A 276: 110–115

    Article  CAS  Google Scholar 

  17. Masuku CM, Shafer WD, Ma W, Gnanamani MK, Jacobs G, Hildebrandt D, Glasser D, Davis BH (2012) J Catal 287: 93–101

    Article  CAS  Google Scholar 

  18. Yang J, Shafer WD, Pendyala VRR, Jacobs G, Chen D, Holmen A, Davis BH (2014) Catal Lett 144:524–530

    Article  CAS  Google Scholar 

  19. Xiao K, Bao Z, Qi X, Wang X, Zhong L, Fang K, Lin M, Sun Y (2013) J Mol Catal A 378: 319–325

    Article  CAS  Google Scholar 

  20. Xiao K, Bao Z, Qi X, Wang X, Zhong L, Lin M, Fang K, Sun Y (2013) Catal Commun 40:154–157

    Article  CAS  Google Scholar 

  21. Xiao K, Qi X, Bao Z, Wang X, Zhong L, Fang K, Lin M, Sun Y (2013) Catal Sci Technol 3: 1591–1602

    Article  CAS  Google Scholar 

  22. Bao ZH, Xiao K, Qi XZ, Wang XX, Zhong LS, Fang KG, Lin MG, Sun YH (2013) J Energy Chem 22:107–113

    Article  CAS  Google Scholar 

  23. Schulz H, Nie ZQ, Ousmanov F (2002) Catal Today 71: 351–360

    Article  CAS  Google Scholar 

  24. Schulz H, Schaub G, Claeys M, Riedel T (1999) Appl Catal A 186:215–227

    Article  CAS  Google Scholar 

  25. Riedel T, Schulz H, Schaub G, Jun KW, Hwang JS, Lee KW (2003) Top Catal 26:41–54

    Article  CAS  Google Scholar 

  26. Wilson J, Degroot C (1995) J Phys Chem 99: 7860–7866

    Article  CAS  Google Scholar 

  27. Banerjee A, Navarro V, Frenken JWM, van Bavel AP, Kuipers HPCE, Saeys M (2016) J Phys Chem Lett 7: 1996–2001

    Article  CAS  PubMed  Google Scholar 

  28. Huff GA, Satterfield CN (1985) Ind Eng Chem Proc Des Dev 24: 986–995

    Article  CAS  Google Scholar 

  29. Komaya T, Bell AT (1994) J Catal 146: 237–248

    Article  CAS  Google Scholar 

  30. Kuipers EW, Vinkenburg IH, Oosterbeek H (1995) J Catal 152: 137–146

    Article  CAS  Google Scholar 

  31. Huff GA, Satterfield CN (1984) J Catal 85: 370–379

    Article  CAS  Google Scholar 

  32. Donnelly TJ, Yates IC, Satterfield CN (1988) Energy Fuels 2: 734–739

    Article  CAS  Google Scholar 

  33. Matsumoto DK, Satterfield CN (1989) Energy Fuels 3: 249–254

    Article  Google Scholar 

  34. Yang Y, Wang L, Xiao K, Zhao T, Wang H, Zhong L, Sun Y (2015) Catal Sci Technol 5: 4224–4232

    Article  CAS  Google Scholar 

  35. Satterfield CN, Hanlon RT, Tung SE, Zou ZM, Papaefthymiou GC (1986) Ind Eng Chem Prod Res Dev 25: 401–407

    Article  CAS  Google Scholar 

  36. Dinse A, Aigner M, Ulbrich M, Johnson GR, Bell AT (2012) J Catal 288: 104–114

    Article  CAS  Google Scholar 

  37. Bukur DB, Pan Z, Ma W, Jacobs G, Davis BH (2012) Catal Lett 142:1382–1387

    Article  CAS  Google Scholar 

  38. Ma W, Jacobs G, Keogh RA, Bukur DB, Davis BH (2012) Appl Catal A 437–438:1–9

    Article  CAS  Google Scholar 

  39. Herranz T, Rojas S, Perez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) J Catal 243: 199–211

    Article  CAS  Google Scholar 

  40. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237: 405–415

    Article  CAS  Google Scholar 

  41. Davis BH (1992) ACS Div Fuel Chem Preprints 37: 172–183

    CAS  Google Scholar 

  42. Iglesia E (1997) Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  43. Van der Laan GP, Beenackers A (1999) Catal Rev 41: 255–318

  44. Madon RJ, Taylor WF (1981) J Catal 69: 32–43

    Article  CAS  Google Scholar 

  45. Patzlaff J, Liu Y, Graffmann C, Gaube J (1999) Appl Catal A 186:109–119

    Article  CAS  Google Scholar 

  46. Patzlaff J, Liu Y, Graffmann C, Gaube J (2002) Catal Today 71: 381–394

    Article  CAS  Google Scholar 

  47. Gaube J, Klein HF (2010) Appl Catal A 374:120–125

    Article  CAS  Google Scholar 

  48. Iglesia E, Reyes SC, Madon RJ (1991) J Catal 129: 238–256

    Article  CAS  Google Scholar 

  49. Madon RJ, Reyes SC, Iglesia E (1991) J Phys Chem 95: 7795–7804

    Article  CAS  Google Scholar 

  50. Madon RJ, Iglesia E (1993) J Catal 139: 576–590

    Article  CAS  Google Scholar 

  51. Schulz H, Vansteen E, Claeys M (1995) Top Catal 2:223–234

    Article  CAS  Google Scholar 

  52. Kuipers EW, Scheper C, Wilson JH, Vinkenburg IH, Oosterbeek H (1996) J Catal 158: 288–300

    Article  CAS  Google Scholar 

  53. Schulz H, Claeys M (1999) Appl Catal A 186:71–90

    Article  CAS  Google Scholar 

  54. Schulz H, Claeys M (1999) Appl Catal A 186:91–107

    Article  CAS  Google Scholar 

  55. Bukur DB, Lang XS (1999) Ind Eng Chem Res 38:3270–3275

    Article  CAS  Google Scholar 

  56. Donnelly TJ, Satterfield CN (1989) Appl Catal 52: 93–114

    Article  CAS  Google Scholar 

  57. Bukur DB, Nowicki L, Lang XS (1995) Energy Fuels 9: 620–629

    Article  CAS  Google Scholar 

  58. Ji YY, Xiang HW, Yang JL, Xu YY, Li YW, Zhong B (2001) Appl Catal A 214:77–86

    Article  CAS  Google Scholar 

  59. Nijs HH, Jacobs PA (1981) J Chromatogr Sci 19:40–45

    Article  CAS  Google Scholar 

  60. Dictor RA, Bell AT (1984) Ind Eng Chem Fundam 23: 252–256

    Article  CAS  Google Scholar 

  61. Snavely K, Subramaniam B (1997) Ind Eng Chem Res 36:4413–4420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by State Key Fundamental Research Program (Ministry of Science and Technology of China, No. 2011CBA00501), Shanghai Municipal Science, Technology Commission, China (Grant Nos. 11DZ1200300 and 11ZR1436200) and NUPTSF (Grant Nos. NY215016 and NY215079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangshu Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, K., Qi, X., Wang, X. et al. Factors Associated with Accurate Analysis of Fischer–Tropsch Products. Catal Lett 147, 704–715 (2017). https://doi.org/10.1007/s10562-016-1958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1958-4

Keywords

Navigation