Skip to main content
Log in

Copper Manganese Oxides Supported on Multi-Walled Carbon Nanotubes as an Efficient Catalyst for Low Temperature CO Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) with unique properties are finding increasing utility in catalytic applications. In this work, Cu–Mn@MWCNTs (copper manganese oxides supported on MWCNTs) was synthesized as an efficient catalyst for low temperature CO oxidation. The catalyst was characterized by N2 adsorption–desorption, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The CO oxidation activity and long-term working stability of the catalyst were evaluated in 0.1–0.5 % CO and balanced air using a modified fixed-bed reactor. The effects of CO concentration and Cu/Mn molar ratio on the CO oxidation performances were also demonstrated. The increasing CO concentration (0.1–0.5 %) will impair the CO oxidation performances due to the covering of active sites and formation of carbonates and/or hydroxyl species. The increased CO oxidation activity with the changing Cu/Mn molar ratio (1:8–1:1) is ascribed to the improving oxygen utilization in the redox process by increasing Cu content. The synergistic interaction within the Cu–Mn bimetallic catalytic system and the unique properties of the MWCNTs support are also highlighted for the enhanced CO oxidation activity. The catalyst could be considered as a promising option for removing trace CO from typical confined spaces such as space-crafts, submarines and mine refuge chambers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stutte GW, Wheeler RM (1997) Accumulation and effect of volatile organic compounds in closed life support systems. Adv Space Res 20(10):1913–1922

    Article  CAS  Google Scholar 

  2. Arnest R Closed space environment (submarine) and atmosphere control, Naval Submarine Medical Center Groton Conn Submarine Medical Research Lab, 1960

  3. Eldridge C, Nalette T, Graf J, Alptekin G CO Oxidation for Post-Fire Cleanup, The 41st International Conference on Environmental Systems, Portland, Oregon, 2011, AIAA 2011–5048

  4. Jia Y, Liu Y, Liu W, Li Z (2014) Study on purification characteristic of CO2 and CO within closed environment of coal mine refuge chamber. Sep Purif Technol 130:65–73

    Article  CAS  Google Scholar 

  5. Mallon L A review of the currently available methods for ambient temperature carbon monoxide removal in a disabled royal navy submarine, Proceedings of the 38th International Conference on Environmental Systems, San Francisco, California, 2008, doi:10.4271/2008-01-2126

  6. Sribnik F, Birbara PJ, Faszcza JJ, Nalette TA (1990) Smoke and contaminant removal system for Space Station. SAE Trans 99:1145–1153

    Google Scholar 

  7. Ye Q, Jiang J, Wang C, Liu Y, Pan H, Shi Y (2012) Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy Fuels 26:2497–2504

    Article  CAS  Google Scholar 

  8. Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299

    Article  CAS  Google Scholar 

  9. Frank B, Rinaldi A, Blume R, Schlögl R, Su DS (2010) Oxidation stability of multiwalled carbon nanotubes for catalytic applications. Chem Mater 22:4462–4470

    Article  CAS  Google Scholar 

  10. Zhang J, Su D, Zhang A, Wang D, Schlögl R, Hébert C (2007) Nanocarbon as robust catalyst: mechanistic insight into carbon-mediated catalysis. Angew Chem 119:7460–7464

    Article  Google Scholar 

  11. Su DS, Maksimova N, Delgado JJ, Keller N, Mestl G, Ledoux MJ, Schlögl R (2005) Nanocarbons in selective oxidative dehydrogenation reaction. Catal Today 102:110–114

    Article  Google Scholar 

  12. Pereira MFR, Orfao JJM, Figueiredo JL (1999) Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Influence of surface chemical groups. Appl Catal A 184:153–160

    Article  CAS  Google Scholar 

  13. Frank B, Zhang J, Blume R, Schlögl R, Su DS (2009) Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angew Chem Int Edit 48:6913–6917

    Article  CAS  Google Scholar 

  14. Liao S, Holmes KA, Tsaprailis H, Birss VI (2006) High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol. J Am Chem Soc 128:3504–3505

    Article  CAS  Google Scholar 

  15. Planeix JM, Coustel N, Coq B, Bretons V, Kumbhar PS, Dutartre R, Geneste P, Bernier P, Ajayan PM (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116(17):7935–7936

    Article  CAS  Google Scholar 

  16. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A 253(2):337–358

    Article  CAS  Google Scholar 

  17. Cao L, Scheiba F, Roth C, Schweiger F, Cremers C, Stimming U, Qiu X (2006) Novel nanocomposite Pt/RuO2xH2O/carbon nanotube catalysts for direct methanol fuel cells. Angew Chem Int Edit 45:5315–5319

    Article  CAS  Google Scholar 

  18. Li L, Wu G, Xu BQ (2006) Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids. Carbon 44:2973–2983

    Article  CAS  Google Scholar 

  19. Carmo M, Paganin VA, Rosolen JM, Gonzalez ER (2005) Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes. J Power Sources 142:169–176

    Article  CAS  Google Scholar 

  20. Kuo CH, Li W, Song W, Luo Z, Poyraz AS, Guo Y, He J (2014) Facile synthesis of Co3O4@CNT with high catalytic activity for CO oxidation under moisture-rich conditions. ACS Appl Mater Inter 6:11311–11317

    Article  CAS  Google Scholar 

  21. Liu R, Gao N, Zhen F, Zhang Y, Mei L, Zeng X (2013) Doping effect of Al2O3 and CeO2 on Fe2O3 support for gold catalyst in CO oxidation at low-temperature. Chem Eng J 225:245–253

    Article  CAS  Google Scholar 

  22. Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev 41:319–388

    Article  CAS  Google Scholar 

  23. Zhang X, Long E, Li Y, Guo J, Zhang L, Gong M, Wang M, Chen Y (2009) CeO2–ZrO2–La2O3–Al2O3 composite oxide and its supported palladium catalyst for the treatment of exhaust of natural gas engined vehicles. J Nat Gas Chem 18(2):139–144

    Article  CAS  Google Scholar 

  24. Comotti M, Li WC, Spliethoff B, Schüth F (2006) Support effect in high activity gold catalysts for CO oxidation. J Am Chem Soc 128:917–924

    Article  CAS  Google Scholar 

  25. Royer S, Duprez D (2011) Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 3:24–65

    Article  CAS  Google Scholar 

  26. Jansson J, A.E.C. Palmqvist, Fridell E, Skoglundh M, Österlund L, Thormählen P, Langer V (2002) On the catalytic activity of Co3O4 in low-temperature CO oxidation. J Catal 211:387–397

    Article  CAS  Google Scholar 

  27. Li LY, Han WL, Zhang JY, Lu GX, Tang ZC (2016) Controlled pore size of 3D mesoporous Cu-Ce based catalysts and influence of surface textures on the CO catalytic oxidation. Micropor Mesopor Mat 231:9–20

    Article  CAS  Google Scholar 

  28. Le MT, Nguyen TT, Pham PTM, Bruneel E, Van Driessche I (2014) Activated MnO2–Co3O4–CeO2 catalysts for the treatment of CO at room temperature. Appl Catal A 480:34–41

    Article  CAS  Google Scholar 

  29. Aguila G, Gracia F, Araya P (2008) CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2 in the oxidation of CO at low temperature. Appl Catal A 343:16–24

    Article  CAS  Google Scholar 

  30. Pérez NC, Miró EE, Zamaro JM (2013) Microreactors based on CuO-CeO2/zeolite films synthesized onto brass microgrids for the oxidation of CO. Appl Catal B 129:416–425

    Article  Google Scholar 

  31. Almquist JA, Bray WC (1923) The catalytic oxidation of carbon monoxide. I. Efficiency of the catalysts, manganese dioxide, cupric oxide and mixtures of these oxides. J Am Chem Soc 45:2305–2322

    Article  CAS  Google Scholar 

  32. Njagi EC, Chen CH, Genuino H, Galindo H, Huang H, Suib SL (2010) Total oxidation of CO at ambient temperature using copper manganese oxide catalysts prepared by a redox method. Appl Catal B 99:103–110

    Article  CAS  Google Scholar 

  33. Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH (1998) Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Appl Catal A 166:143–152

    Article  CAS  Google Scholar 

  34. Jones C, Taylor SH, Burrows A, Crudace MJ, Kiely CJ, Hutchings GJ (2008) Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation. Chem Commun 14:1707–1709

    Article  Google Scholar 

  35. Gong Y, Chen H, Chen Y, Cui X, Zhu Y, Zhou X, Shi J (2013) A Cu/Mn co-loaded mesoporous ZrO2–TiO2 composite and its CO catalytic oxidation property. Micropor Mesopor Mater 173:112–120

    Article  CAS  Google Scholar 

  36. Larsson PO, Andersson A (2000) Oxides of copper, ceria promoted copper, manganese and copper manganese on Al2O3 for the combustion of CO, ethyl acetate and ethanol. Appl Catal B 24:175–192

    Article  CAS  Google Scholar 

  37. Hasegawa YI, Maki RU, Sano M, Miyake T (2009) Preferential oxidation of CO on copper-containing manganese oxides. Appl Catal A 371:67–72

    Article  CAS  Google Scholar 

  38. Qian K, Qian Z, Hua Q, Jiang Z, Huang W (2013) Structure-activity relationship of CuO/MnO2 catalysts in CO oxidation. Appl Surf Sci 273:357–363

    Article  CAS  Google Scholar 

  39. Tang ZR, Kondrat SA, Dickinson C, Bartley JK, Carley AF, Taylor SH, Hutchings GJ (2011) Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catal Sci Technol 1:740–746

    Article  Google Scholar 

  40. Valdés-Solís T, López I, Marbán G (2010) Copper manganite as a catalyst for the PROX reaction. Deactivation studies. Int J Hydrog Energy 35:1879–1887

    Article  Google Scholar 

  41. Aldridge JKW (2011) Heterogeneous CuMn2O4, Pt, Pd and SnO2 catalysts for ambient temperature oxidation of carbon monoxide, Cardiff University

  42. Hasegawa Y, Fukumoto K, Ishima T, Yamamoto H, Sano M, Miyake T (2009) Preparation of copper-containing mesoporous manganese oxides and their catalytic performance for CO oxidation. Appl Catal B 89:420–424

    Article  CAS  Google Scholar 

  43. Lou Y, Wang L, Zhao Z, Zhang Y, Zhang Z (2014) Low-temperature CO oxidation over Co3O4-based catalysts: Significant promoting effect of Bi2O3 on Co3O4 catalyst. Appl Catal B 146:43–49

    Article  CAS  Google Scholar 

  44. Shen Y, Lu G, Guo Y, Wang Y, Guo Y, Gong X (2011) Study on the catalytic reaction mechanism of low temperature oxidation of CO over Pd–Cu–Clx/Al2O3 catalyst. Catal Today 175:558–567

    Article  CAS  Google Scholar 

  45. López I, Valdés-Solís T, Marbán G (2008) An attempt to rank copper-based catalysts used in the CO-PROX Re Action. Int J Hydrog Energy 33:197–205

    Article  Google Scholar 

  46. Di Benedetto A, Landi G, Lisi L, Russo G (2013) Role of CO2 on CO preferential oxidation over CuO/CeO2 catalyst. Appl Catal B 142:169–177

    Article  Google Scholar 

  47. Guo Y, Li C, Lu S, Zhao C (2016) Low temperature CO catalytic oxidation and kinetic performances of KOH-Hopcalite in the presence of CO2. RSC Adv 6:7181–7188

    Article  CAS  Google Scholar 

  48. Srivastava AK, Saxena A, Shah D, Mahato TH, Singh B, Shrivastava AR, Shinde CP (2012) Catalytic removal of carbon monoxide over carbon supported palladium catalyst. J Hazard Mater 241:463–471

    Article  Google Scholar 

  49. Buciuman FC, Patcas F, Hahn T (1999) A spillover approach to oxidation catalysis over copper and manganese mixed oxides. Chem Eng Process 38:563–569

    Article  CAS  Google Scholar 

  50. Schwab GM, Kanungo SB (1977) Die katalytische Verstärkung im Hopcalit. Z Phys Chem 107:109–120

    Article  CAS  Google Scholar 

  51. Kanungo SB (1979) Physicochemical properties of MnO2 and MnO2–CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation. J Catal 58:419–435

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (U1510129 and 51323010) and the Fundamental Research Funds for the Central Universities (WK2320000034) is sincerely acknowledged. The authors also wish to thank Dr. Yanming Ding for the English editing for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shouxiang Lu or Chuanwen Zhao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 58 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Lin, J., Li, C. et al. Copper Manganese Oxides Supported on Multi-Walled Carbon Nanotubes as an Efficient Catalyst for Low Temperature CO Oxidation. Catal Lett 146, 2364–2375 (2016). https://doi.org/10.1007/s10562-016-1869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1869-4

Keywords

Navigation