Skip to main content
Log in

Effect of Graphitic Carbon Nitride on the Electronic and Catalytic Properties of Ru Nanoparticles for Ammonia Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Graphitic carbon nitrides were employed to prepare the Ruthenium-based ammonia synthesis catalysts by thermal decomposition of Ru3(CO)12 under N2 or H2 atmosphere. Different pretreatment atmospheres significantly affected the interaction between Ru nanoparticles and the graphitic carbon nitride. The strong metal support interaction enhanced the electronic density transfer from rich-electron π-plane of the support to the Ru nanoparticles. And it further caused the upshift of d-band center of Ru nanoparticles. The upshift of d-band center improved the ability of surface to bond to N2, and consequently the ammonia synthesis activity was enhanced.

Graphical Abstract

Electron-rich and graphitic carbon nitride enhanced the electron density of Ru nanoparticles. And that caused the upshift of d-band center of Ru nanoparticles. This upshift of d-band center improved the ability of surface to bond to N2, and consequently the ammonia synthesis activity was enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dahl S, Törnqvist E, Chorkendorff I (2000) J Catal 192:381

    Article  CAS  Google Scholar 

  2. Jacobsen CJH, Dahl S, Törnqvist PL, Törnqvist E, Jensen L, Topsøe H, Prip DV, Møenshaug PB, Chorkendorff I (2000) J Mol Catal A Chem 163:19

    Article  CAS  Google Scholar 

  3. Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim SW, Hara M, Hosono H (2012) Nat Chem 4:934

    Article  CAS  Google Scholar 

  4. Liang C, Li Z, Qiu J, Li C (2002) J Catal 211:278

  5. Guo S, Pan X, Gao H, Yang Z, Zhao J, Bao X (2010) Chem Eur J 16:5379

    Article  CAS  Google Scholar 

  6. Murata S, Aika KI (1992) J Catal 136:110

  7. Gao WJ, Gao SJ, Zhang HB, Pan XL, Bao XH (2011) Chin J Catal 32:1418

    CAS  Google Scholar 

  8. Kitano M, Kanbara S, Inoue Y, Kuganathan N, Sushko PV, Yokoyama T, Hara M, Hosono H (2015) Nat Commun 6:6731

    Article  CAS  Google Scholar 

  9. Lu Y, Li J, Tada T, Toda Y, Ueda S, Yokoyama T, Kitano M, Hosono H (2016) J Am Chem Soc 138:3970

    Article  CAS  Google Scholar 

  10. Zhu J, Xiao P, Li H, Carabineiro SAC (2014) ACS Appl Mater Inter 6:16449

    Article  CAS  Google Scholar 

  11. Wang Z, Wei J, Liu G, Zhou Y, Han K, Ye H (2015) Catal Sci Technol 5:3926

    Article  CAS  Google Scholar 

  12. Wang Y, Yao J, Li H, Su D, Antonietti M (2011) J Am Chem Soc 133:2362

    Article  CAS  Google Scholar 

  13. Gong Y, Zhang P, Xu X, Li Y, Li H, Wang Y (2013) J Catal 297:272

    Article  CAS  Google Scholar 

  14. Li XH, Antonietti M (2013) Chem Soc Rev 42:6593

    Article  CAS  Google Scholar 

  15. Liu X, Yao KX, Meng C, Han Y (2012) Dalton Trans 41:1289

    Article  CAS  Google Scholar 

  16. Hammer B, Nørskov JK (1995) Nature 376:238

    Article  CAS  Google Scholar 

  17. Xiao J, Pan X, Guo S, Ren P, Bao X (2015) J Am Chem Soc 137:477

    Article  CAS  Google Scholar 

  18. Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK, J Mol Catal A Chem 115:pp 421

  19. Lin BY, Wei KM, Ni J, Lin JX (2013) ChemCatChem 5:1941

    Article  CAS  Google Scholar 

  20. Dong GH, Ho WK, Wang C (2015) J Mater Chem A 3:23435

    Article  CAS  Google Scholar 

  21. Fernández C, Sassoye C, Debecker DP, Sanchez C, Ruiz P (2014) Appl Catal A 474:194

    Article  Google Scholar 

  22. Lin BY, Qi YC, Guo YJ, Lin JX, Ni J (2015) Catal Sci Technol 5:2829

    Article  CAS  Google Scholar 

  23. Zhou Z, Wang J, Yu J, Shen Y, Li Y, Liu A, Liu S, Zhang Y (2015) J Am Chem Soc 137:2179

    Article  CAS  Google Scholar 

  24. Tenney SA, He W, Ratliff JS, Mullins DR, Chen DA (2011) Top Catal 54:42

    Article  CAS  Google Scholar 

  25. Ma Z W, Xiong XM, Song CL, Hu B, Zhang WQ (2016) RSC Adv 6:51106

    Article  CAS  Google Scholar 

  26. Prieto MJ, Carbonio EA, Fatayer S, Landers R, Siervo A (2014) Phys Chem Chem Phys 16:13329

    Article  CAS  Google Scholar 

  27. Xu Y, Greeley J, Mavrikakis M (2005) J Am Chem Soc 127:12823

    Article  CAS  Google Scholar 

  28. Yan SC, Li ZS, Zou ZG (2009) Langmuir 25:10397

    Article  CAS  Google Scholar 

  29. Bojdys MJ, Müller JO, Antonietti M, Thomas A (2008) Chem Eur J 14:8177

    Article  CAS  Google Scholar 

  30. Khabashesku VN, Zimmerman JL, Margrave JL (2000) Chem Mater 12:3264

    Article  CAS  Google Scholar 

  31. Xu M, Han L, Dong S (2013) ACS Appl Mater Inter 5:12533

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundation of China (Grant No. 21403257).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Hu or Chengli Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2453 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Zhao, S., Xiong, X. et al. Effect of Graphitic Carbon Nitride on the Electronic and Catalytic Properties of Ru Nanoparticles for Ammonia Synthesis. Catal Lett 146, 2324–2329 (2016). https://doi.org/10.1007/s10562-016-1862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1862-y

Keywords

Navigation