Skip to main content
Log in

A Fine Dispersed Cobalt Catalyst with Macro-Pore for Hydroformylation of 1-Hexene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A highly dispersed cobalt catalyst for hydroformylation of 1-hexene was developed using macroporous silica (pore diameter 83.7 nm) as support. The effects of support pretreatment on the properties and catalytic activities of the obtained catalysts were investigated. The results indicated that slurry impregnation (SI) method could significantly enhance the interaction between support and cobalt precursors, leading to the formation of small cobalt particles. Moreover, this interaction would increase with the pretreating temperature or the number of hydroxyl groups in pretreating solvent. Due to the small cobalt particles and high diffusion rate of reactants and products in the macropore, the highly dispersed Co/Q-100 (PTO, SI-333) catalyst exhibited 11 times higher heptanal yield and much higher n/i ratio than the conventional Co/SiO2 (EG) catalyst which was prepared on mesoporous silica which contained similar cobalt particle size.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Neves ACB, Calvete MJF, Pinho e Melo TMVD, Pereira MM (2012) Immobilized catalysts for hydroformylation reactions: a versatile tool for aldehyde synthesis. Eur J Org Chem 32:6309

    Article  Google Scholar 

  2. Franke R, Selent D, Borner A (2012) Applied hydroformylation. Chem Rev 112:5675

    Article  CAS  Google Scholar 

  3. Cai Q, Li JL (2008) Catalytic properties of the Ru promoted Co/SBA-15 catalysts for Fischer–Tropsch synthesis. Catal Commun 9:2003

    Article  CAS  Google Scholar 

  4. Wang SR, Yin QQ, Guo JF, Ru B, Zhu LJ (2013) Improved Fischer–Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts. Fuel 108:597

    Article  CAS  Google Scholar 

  5. Arakawa H, Takahashi N, Hanaoka T, Takeuchi K, Matsuzake T, Sugi Y (1988) Effect of Rh dispersion on vapor phase and pressurized hydroformylation of ethylene over Rh/SiO2 catalyst. Chem Lett 17:1917

    Article  Google Scholar 

  6. Song XG, Ding YJ, Chen WM, Dong WD, Pei YP, Zang J, Yan L, Lu Y (2013) Formation of 3-pentanone via ethylene hydroformylation over Co/activated carbon catalyst. Appl Catal A 452:155

    Article  CAS  Google Scholar 

  7. Botes FG, Niemantsverdriet JW, van de Loosdrecht J (2013) A comparison of cobalt and iron based slurry phase Fischer–Tropsch synthesis. Catal Today 215:112

    Article  CAS  Google Scholar 

  8. Fan L, Yokota K, Fujimoto K (1992) Supercritical phase Fischer–Tropsch synthesis: catalyst pore-size effect. AIChE J 38:1639

    Article  CAS  Google Scholar 

  9. Xu BL, Fan YN, Zhang Y, Tsubaki N (2005) Pore diffusion simulation model of bimodal catalyst for Fischer–Tropsch synthesis. AIChE J 51:2068

    Article  CAS  Google Scholar 

  10. Liu YC, Fang KG, Chen JG, Sun YH (2007) Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer–Tropsch catalysts. Green Chem 9:611

    Article  CAS  Google Scholar 

  11. Iglesia E, Soled SL, Fiato RA (1992) Fischer–Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal 137:212

    Article  CAS  Google Scholar 

  12. Gnanamani MK, Jacobs G, Shafer WD, Davis BH (2013) Fischer–Tropsch synthesis: activity of metallic phases of cobalt supported on silica. Catal Today 215:13.

    Article  CAS  Google Scholar 

  13. Zhang Y, Nagasaka K, Qiu XQ, Tsubaki N (2005) Hydroformylation of 1-hexene for oxygenate fuels on supported cobalt catalysts. Catal Today 104:48

    Article  CAS  Google Scholar 

  14. Zhang Y, Yoneyama Y, Tsubaki N (2002) Simultaneous introduction of chemical and spatial effects via a new bimodal catalyst support preparation method. Chem Commun 11:1216

    Article  Google Scholar 

  15. Zhang Y, Hanayama K, Tsubaki N (2006) The surface modification effects of silica support by organic solvents for Fischer–Tropsch synthesis catalysts. Catal Commun 7:251

    Article  Google Scholar 

  16. Zhang Y, Liu Y, Yang GH, Endo Y, Tsubaki N (2009) The solvent effects during preparation of Fischer–Tropsch synthesis catalysts: improvement of reducibility, dispersion of supported cobalt and stability of catalyst. Catal Today 142:85

    Article  CAS  Google Scholar 

  17. Chen JF, Zhang YR, Tan L, Zhang Y (2011) A simple method for preparing the highly dispersed supported Co3O4 on silica support. Ind Eng Chem Res 50:4212

    Article  CAS  Google Scholar 

  18. Lv XY, Chen JF, Tan YS, Zhang Y (2012) A highly dispersed nickel supported catalyst for dry reforming of methane. Catal Commun 20:6

    Article  CAS  Google Scholar 

  19. Suzuki Y, Kuchida M, Sakama Y, Saiki H, Karube I, Tsubaki N (2013) Promotion effect of the addition of Eu to Co/silica catalyst for Fischer–Tropsch synthesis. Catal Commun 36:75

    Article  CAS  Google Scholar 

  20. Jiang HB, Jiang HJ, Su K, Zhu DM, Zheng XL, Fu HY, Chen H, Li RX (2012) A Ru-Sn-Co/AlO(OH) as a highly efficient catalyst for hydrogenation of dimethyl adipate to 1,6-hexanodiol in aqueous phase. Appl Catal A 447–448:164

    Article  Google Scholar 

  21. Bronnimann CE, Chuang I, Hawkins BL, Maciel GE (1987) Dehydration of silica-aluminas monitored by high-resolution solid-state proton NMR. J Am Chem Soc 109:1562

    Article  CAS  Google Scholar 

  22. Bronnimann CE, Zeigler RC, Maciel GE (1988) Proton NMR study of dehydration of the silica gel surface. J Am Chem Soc 110:2023

    Article  CAS  Google Scholar 

  23. Jacobs G, Das TK, Zhang YQ, Li JL, Racoillet G, Davis BH (2002) Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233:263

    Article  CAS  Google Scholar 

  24. Finocchio E, Rossetti I, Ramis G (2013) Redox properties of Co- and Cu-based catalysts for the stream reforming of ethanol. Int J Hydrogen Energy 38:3213

    Article  CAS  Google Scholar 

  25. Liu ZG, Chai SH, Binder A, Li YY, Ji LT, Dai S (2013) Influence of calcinations temperature on the structure and catalytic performance of CuOx-CoOy-CeO2 ternary mixed oxide for CO oxidation. Appl Catal A 451:282

    Article  CAS  Google Scholar 

  26. Meza E, Ortiz J, Ruiz-Leon D, Marco JF, Gautier JL (2012) Lithium-nickel cobalt oxides with spinel structure prepared at low temperature. XRD, XPS, and EIS measurements. Mater Lett 70:189

    Article  CAS  Google Scholar 

  27. Mochizuki T, Hara T, Koizumi N, Yamada M (2007) Surface structure and Fischer–Tropsch synthesis activity of highly active Co/SiO2 catalysts prepared from the impregnating solution modified with some chelating agents. Appl Catal A 317:97

    Article  CAS  Google Scholar 

  28. Tsubaki N, Sun SL, Fujimoto K (2001) Different functions of the noble metals added to cobalt catalysts for Fischer–Tropsch synthesis. J Catal 199:236

    Article  CAS  Google Scholar 

  29. Sun SL, Tsubaki N, Fujimoto K (2000) Promotional effect of noble metal to Co-based Fischer–Tropsch catalysts prepared form mixed cobalt salts. Chem Lett 29:176

    Article  Google Scholar 

  30. Zhang Y, Shinoda M, Shiki Y, Tsubaki N (2006) Hydroformylation of 1-hexene for oxygenate fuels via promoted cobalt/active carbon catalysts at low-pressure. Fuel 85:1194

    Article  CAS  Google Scholar 

  31. Takahashi N, Tobise T, Mogi I, Sasaki M (1992) Effects of Pd dispersion on the catalytic activity of Pd/SiO2 for ethylene hydroformylation. Bull Chem Soc Jpn 65:2565

    Article  CAS  Google Scholar 

  32. Wang B, Chen JF, Zhang Y (2015) Synthesis of highly dispersed cobalt catalyst for hydroformylation of 1-hexene. RSC Adv 5:22300

    Article  CAS  Google Scholar 

  33. Alvila L, Pursiainen J, Kiviaho J, Pakkanen TA, Krause O (1994) J Mol Catal 91:335

    Article  CAS  Google Scholar 

  34. Qiu X, Tsubaki N, Fujimoto K (2001) J Chem Eng Jpn 34:1366

    Article  CAS  Google Scholar 

  35. Zhang Y, Nagasaka K, Qiu X, Tsubaki N (2004) Appl Catal A 276:103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of P. R. China (No. 91334206, 21606011), Ministry of Education of P. R. China (NCET-13-0653), National “863” program of P. R. China (No. 2013AA031702), Innovation and Promotion Project of Beijing University of Chemical Technology (No. JC1505), BUCT Fund for Disciplines Construction and Development (No. XK1505), and China Postdoctoral Science Foundation (2016M591051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Z., Wang, B. et al. A Fine Dispersed Cobalt Catalyst with Macro-Pore for Hydroformylation of 1-Hexene. Catal Lett 146, 2252–2260 (2016). https://doi.org/10.1007/s10562-016-1853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1853-z

Keywords

Navigation