Skip to main content
Log in

Gelatin-Immobilized Manganese Peroxidase with Novel Catalytic Characteristics and Its Industrial Exploitation for Fruit Juice Clarification Purposes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the present study, glutaraldehyde (GLA) activated gelatin hydrogel was used as a solid support to encapsulate the manganese peroxidase (MnP; E.C. 1.11.1.13) produced by Ganoderma lucidum IBL-05 under pre-optimized growth environment. Through gelatin-assisted immobilization, a maximal of 83.2 ± 2.91 % immobilization yield was achieved at optimum conditions of gelatin; 20.0 % (w/v), GLA 0.25 % (v/v) after 2 h activation time using 0.6 mg/mL of enzyme concentration. In contrast to aqueous form, the insolubilized MnP presented its maximum activity at pH 6.0 and 60 °C. Inevitably, enzyme immobilization significantly (P < 0.05) increased the thermal stability profile of in-house isolated MnP. At 60 °C, maximum activity of free MnP decreased to 14.2 ± 1.4 %, whereas immobilized MnP retained 70.18 ± 3.2 % of its original activity after 120 min. To explore the industrial applicability of MnP, the immobilized MnP was tested for apple and orange fruit juice clarification features in a packed bed reactor system. The immobilized MnP showed commendable results in the de-bittering’s of investigated fruit juices, decreasing 42.7 % of the original apple juice color and 36.3 of its turbidity. Whereas, the color and turbidity reduction characteristics of orange juice were 51.5 and 43.6 %, respectively. After six consecutive cycles, the immobilized-MnP was able to retain more than 60.0 % of its initial activity. Collectively, catalytic, thermo-stability and clarity amelioration features of the gel-entrapped MnP suggest a high potential of enzymatic treatment for biotechnological exploitability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agcam E, Akyıldız A, Akdemir Evrendilek G (2014) Food Chem 143:354–361

    Article  CAS  Google Scholar 

  2. Neifar M, Ellouze-Ghorbel RAOUDHA, Kamoun A, Baklouti S, Mokni A, Jaouani A, Ellouze-Chaabouni SEMIA (2011) J Food Process Eng 34(4):1199–1219

    Article  CAS  Google Scholar 

  3. Ozdal T, Capanoglu E, Altay F (2013) Food Res Int 51(2):954–970

    Article  CAS  Google Scholar 

  4. Pezzella C, Guarino L, Piscitelli A (2015) Cell Mol Life Sci 72:923–940

    Article  CAS  Google Scholar 

  5. Friedman M (1996) J Agric Food Chem 44(3):631–653

    Article  CAS  Google Scholar 

  6. Lettera V, Pezzella C, Cicatiello P, Piscitelli A, Giacobelli VG, Galano E, Sannia G (2016) Food Chem 196:1272–1278

    Article  CAS  Google Scholar 

  7. Gassara-Chatti F, Brar SK, Ajila CM, Verma M, Tyagi RD, Valero JR (2013) Food Chem 137(1):18–24

    Article  CAS  Google Scholar 

  8. Zhou XW, Cong WR, Su KQ, Zhang YM (2013) Crit Rev Microbiol 39(4):416–426

    Article  CAS  Google Scholar 

  9. Manavalan T, Manavalan A, Thangavelu KP, Heese K (2013) Biochem Eng J 70:106–114

    Article  CAS  Google Scholar 

  10. Manavalan T, Manavalan V, Thangavelu KP, Kutzner A, Heese K (2015) J Food Biochem 39(6):754–764

    Article  CAS  Google Scholar 

  11. Yasmeen Q, Asgher M, Sheikh MA, Nawaz H (2013) Bioresources 8(1):944–968

    Article  Google Scholar 

  12. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Chem Soc Rev 42(15):6437–6474

    Article  CAS  Google Scholar 

  13. Mukhopadhyay A, Dasgupta AK, Chakrabarti K (2015) Bioresour Technol 179:573–584

    Article  CAS  Google Scholar 

  14. Asgher M, Wahab A, Bilal M, Iqbal HMN (2016) Biocatal Agric Biotechnol 6:195–201

    Google Scholar 

  15. Bilal M, Asgher M (2016) J Mol Catal B 128:82–93

    Article  CAS  Google Scholar 

  16. Bilal M, Iqbal M, Hu H, Zhang X (2016) Biochem Eng J 109:153–161

    Article  CAS  Google Scholar 

  17. Hanefeld U, Gardossi L, Magner E (2009) Chem Soc Rev 38(2):453–468

    Article  CAS  Google Scholar 

  18. Secundo F (2013) Chem Soc Rev 42(15):6250–6261

    Article  CAS  Google Scholar 

  19. Asgher M, Shahid M, Kamal S, Iqbal HMN (2014) J Mol Catal B 101:56–66

    Article  CAS  Google Scholar 

  20. Shin M, Nguyen T, Ramsay J (2002) Appl Microbiol Biotechnol 60(1–2):218–223

    CAS  Google Scholar 

  21. Hernandez K, Fernandez-Lafuente R (2011) Enzyme Microb Technol 48(2):107–122

    Article  CAS  Google Scholar 

  22. Munjal N, Sawhney SK (2002) Enzyme Microb Technol 30(5):613–619

    Article  CAS  Google Scholar 

  23. Vujčić Z, Miloradović Z, Milovanović A, Božić N (2011) Food Chem 126(1):236–240

    Article  Google Scholar 

  24. Asgher M, Aslam B, Iqbal HMN (2013) Chin J Catal 34(9):1756–1761

    Article  CAS  Google Scholar 

  25. Iqbal HMN, Asgher M, Bhatti HN (2011) Bioresources 6(2):1273–1287

    CAS  Google Scholar 

  26. Bradford MM (1976) Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  27. Oszmianski J, Lee CY (1990) J Agric Food Chem 38(10):1892–1895

    Article  CAS  Google Scholar 

  28. Swain T, Hillis WE (1959) J Sci Food Agric 10(1):63–68

    Article  CAS  Google Scholar 

  29. Brand-Williams W, Cuvelier ME, Berset CLWT (1995) LWT–Food Sci Technol 28(1):25–30

    CAS  Google Scholar 

  30. Jaiswal N, Prakash O, Talat M, Hasan SH, Pandey RK (2012) J Genet Eng Biotechnol 10(1):161–167

    Article  CAS  Google Scholar 

  31. Srivastava PK, Anand A (2014) Int J Biol Macromol 64:150–154

    Article  CAS  Google Scholar 

  32. Bauduin P, Nohmie F, Touraud D, Neueder R, Kunz W, Ninham BW (2006) J Mol Liq 123(1):14–19

    Article  CAS  Google Scholar 

  33. Singh V, Rakshit K, Rathee S, Angmo S, Kaushal S, Garg P, Singhal N (2016) Bioresour Technol 214:528–533

    Article  CAS  Google Scholar 

  34. Ansari SA, Husain Q (2012) Biotechnol Adv 30(3):512–523

    Article  CAS  Google Scholar 

  35. Sohrabi N, Rasouli N, Torkzadeh M (2014) Chem Eng J 240:426–433

    Article  CAS  Google Scholar 

  36. Lu R, Miyakoshi T (2012) Enzyme Res 12:8

    Google Scholar 

  37. Kutcherlapati SR, Yeole N, Jana T (2016) J Coll Interface Sci 463:164–172

    Article  CAS  Google Scholar 

  38. Akgöl S, Kacar Y, Denizli A, Arıca MY (2001) Food Chem 74(3):281–288

    Article  Google Scholar 

  39. Abdullah AL, Sulaiman NM, Aroua MK, Noor MMM (2007) J Food Eng 81(1):65–71

    Article  CAS  Google Scholar 

  40. de Souza Bezerra, Bassan JC, de Oliveira Santos VT, Ferraz A, Monti R (2015) Process Biochem 50(3):417–423

    Article  Google Scholar 

Download references

Acknowledgments

The financial support provided by the Higher Education Commission (HEC), Islamabad, Pakistan is thankfully acknowledged. The authors are also grateful to the State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China for providing technical and analytical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz M. N. Iqbal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Asgher, M., Iqbal, H.M.N. et al. Gelatin-Immobilized Manganese Peroxidase with Novel Catalytic Characteristics and Its Industrial Exploitation for Fruit Juice Clarification Purposes. Catal Lett 146, 2221–2228 (2016). https://doi.org/10.1007/s10562-016-1848-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1848-9

Keywords

Navigation