Skip to main content
Log in

Improved Catalytic Performance of C-axis Oriented HZSM-5 Nanobunches Synthesized by Re-aging

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

C-axis oriented HZSM-5 nanobunches were synthesized using the combination hydrothermal synthesis method and a re-aging procedure without any type of mesoscale template. Then, the samples were characterized by a variety of physical techniques, such as XRD, SEM, TEM, N2 absorption, FTIR and XPS. Their activity was investigated via the transformation of methanol to aromatic compounds using a fixed-bed micro-reactor at 450 °C of temperature and a WHSV of 2 h−1 under ambient pressure. Good correlation was observed between the re-aging procedure and the orientation of crystalline growth, the doping effect of Zn and the surface acid sites. The final product synthesized by the re-aging procedure exhibited loose aggregation with well-ordered nanobunches along the c-axis direction, and the crystal bunches are stacked together with intercrystalline distances of approximately 3–4 nm. More doped Zn sites and weak Brønsted acid sites existed on the surface of the bunches. Due to the shortened microporous channel, open mesopores and weak Brønsted acid sites, this sample exhibited a higher catalytic activity and much longer lifetime to endure coke deposition during the catalytic conversion of methanol to aromatic compounds compared to those of the conventional microsized ZSM-5 crystal.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ni YM, Sun AM, Wu XL, Hai GL, Hu JL, Li T, Li GX, Ni YM, Sun AM, Wu XL (2011) Microporous Mesoporous Mater 143:435

    Article  CAS  Google Scholar 

  2. Niu XJ, Gao J, Miao Q, Dong M, Wang GF, Fan WB, Qin ZF, Wang JG (2014) Microporous Mesoporous Mater 197:252

    Article  CAS  Google Scholar 

  3. Ilias S, Bhan A (2013) Proc Natl Acad Sci USA 109:9744

    Google Scholar 

  4. Bjørgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) J Catal 249:195

    Article  Google Scholar 

  5. Svelle S, Visur M, Olsbye U, Saepurahman, Bjørgen M (2011) Top Catal 54:897

    Article  CAS  Google Scholar 

  6. Khodakov AY, Wei C, Pascal F (2007) Chem Rev 38:1692

    Article  Google Scholar 

  7. Mores D, Kornatowski J, Olsbye U, Weckhuysen BM (2011) Chem Eur J 17:2874

    Article  CAS  Google Scholar 

  8. Haw JF, Marcus DM (2005) Top Catal 34:41

    Article  CAS  Google Scholar 

  9. Lesthaeghe D, Horré A, Waroquier M, Marin GB, Speyboeck VV (2009) Chem Eur J 15:10803

    Article  CAS  Google Scholar 

  10. Yang CG, Qiu MH, Hu SW, Chen XQ, Zeng GF, Liu ZY, Sun YH (2016) Microporous Mesoporous Mater 231:110

    Article  CAS  Google Scholar 

  11. Ni YM, Peng WY, Sun AM, Mo WL, Hu JL, Li T, Li GX (2010) J Ind Eng Chem 16:503

    Article  CAS  Google Scholar 

  12. Barthos R, Bánsági T, Zakar TS, Solymosi F (2007) J Catal 247:368

    Article  CAS  Google Scholar 

  13. Shen K, Qian WZ, Wang N, Zhang JG, Wei F (2013) J mater chem A 1:3272

    Article  CAS  Google Scholar 

  14. Chu RZ, Meng XL, Zong ZM, Wei XY (2007) Mod Chem Ind 27:382

    CAS  Google Scholar 

  15. Kui S, Qian WZ, Wang N, Su C, Wei F (2013) JACS 135:15322

    Article  Google Scholar 

  16. Coutinho D, Balkus K Jr (2002) Microporous Mesoporous Mater 52:79

    Article  CAS  Google Scholar 

  17. Negishi H, Reuß S, Schwieger W, Boccaccini AR (2015) Key Eng Mater 654:47

    Article  Google Scholar 

  18. Qin QF, Sun JB, Cui M, Yang JH, Meng CG (2010) Mater Rev 24:62

    Google Scholar 

  19. Xomeritakis G, Lai ZP, Tsapatsis M (2001) Ind Eng Chem Res 40:544

    Article  CAS  Google Scholar 

  20. Chau JLH, Tellez C, Yeung KL, Ho K (2000) J Membr Sci 164:257

    Article  Google Scholar 

  21. Wong WC, Au LTY, Lau PPS, Ariso CT, Yeung KL (2001) J Membr Sci 191:143

    Article  CAS  Google Scholar 

  22. Dong WY, Ren Y, Zhou WZ, Long YC (2003) Acta Chim Sin Chin Ed 61:1521

    CAS  Google Scholar 

  23. Conte M, Lopez-Sanchez JA, He Q, Morgan DJ, Ryabenkova Y, Bartley JK, Carley AF, Taylor SH, Kiely CJ, Khalid K, Hutchings GJ (2012) Catal Sci Technol 2:105

    Article  CAS  Google Scholar 

  24. Freeman D, Wells RPK, Hutchings GJ (2002) Catal Lett 82:217

    Article  CAS  Google Scholar 

  25. Wang DL, Qu YX, Zhang YK, Wang JD (2015) J Beijing Univ Chem Technol 42:31

    Google Scholar 

  26. Lopez-Sanchez JA, Conte M, Landon P, Zhou W, Bartley JK, Taylor SH, Carley AF, Kiely CJ, Khalid K, Hutchings GJ (2012) Catal Lett 142:1049

    Article  CAS  Google Scholar 

  27. Wang DJ, Li XL, Liu ZN, Zhang YH, Xie ZK, Yi T (2010) J Colloid Interface Sci 350:290

    Article  CAS  Google Scholar 

  28. Tsapatsis M, Lovallo M, Okubo T, Davis ME, Sadakata M (1995) Chem Mater 7:1734

    Article  CAS  Google Scholar 

  29. Ni YM, Sun AM, Wu XL, Hu JL, Li T, Li GX (2011) Chin J Chem Eng 19:439

    Article  CAS  Google Scholar 

  30. Wang ZB, Yan YS (2001) Chem Mater 13:1101

    Article  CAS  Google Scholar 

  31. Oh MS, Kim SH, Seong TY (2005) Appl Phys Lett 87:122103

    Article  Google Scholar 

  32. Srivatsa SC, Kumar VP, Viswanadham B, Amirineni S, Chary KVR (2015) J Nanosci Nanotechnol 15:5391

    Article  Google Scholar 

  33. Rodrigues MV, Vignatti C, Garetto T, Pulcinelli SH, Santilli CV, Martins L (2015) Appl Catal A 495:84

    Article  CAS  Google Scholar 

  34. Govindaraj R, Pandian MS, Murugan GS, Ramasamy P, Mukhopadhyay S (2015) J Mater Sci Mater Electron 26:2609

    Article  CAS  Google Scholar 

  35. Ali K, Choi K-H, Jo J, Lee YW (2014) Mater Lett 136:90

    Article  CAS  Google Scholar 

  36. Yang PF, Li JY, Li TD (2011) Adv Mater Res 160:60

    Google Scholar 

  37. Rong LK, Yin WZ, CHU M, Zhang JS, Bai CH (2015) Chin Rare Earths 36:29

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by National Natural Science Foundation of China (51204179, 51204182), Key Laboratory of Gas and Fire Control for Coal Mines, China University of Mining & Technology, XuZhou, Jiangsu Province, China and The Natural Science Foundation of Jiangsu Province, China (BK20141242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianliang Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, R., Xu, T., Meng, X. et al. Improved Catalytic Performance of C-axis Oriented HZSM-5 Nanobunches Synthesized by Re-aging. Catal Lett 146, 1965–1972 (2016). https://doi.org/10.1007/s10562-016-1835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1835-1

Keywords

Navigation