Skip to main content
Log in

Fischer–Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer–Tropsch (FT) catalysts was investigated in our earlier studies (Ma et al. in ACS Catal 5:3124–3136, 2015; Davis et al., DOE final report, 2011; Gnanamani et al. in Catal Lett 144:1127–1133, 2014). For an iron catalyst, lower HCl concentrations (<2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts is explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate the HCl poisoning mechanism on the iron and cobalt catalysts. Normalized XANES spectra recorded at the Cl K-edge indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g., cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Klerk A (2008) Green Chem 10:1249

    Article  Google Scholar 

  2. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) Catal. Sci. Technol 4:2210

    CAS  Google Scholar 

  3. TorresGalvis HM, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Science 335:835

    Article  CAS  Google Scholar 

  4. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A Gen 233:263

    Article  CAS  Google Scholar 

  5. Davis BH, Occelli ML (2007) Fischer–tropsch synthesis, catalysts and catalysis, vol 163. Elsevier, Amsterdam

    Google Scholar 

  6. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692

    Article  CAS  Google Scholar 

  7. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Am Chem Soc 128:3956

    Article  CAS  Google Scholar 

  8. van Steen E, Claeys M (2008) Chem Eng Technol 31:655

    Article  Google Scholar 

  9. Hamelinck CN, Faaij APC, den Uil H, Boerrigter H (2004) Energy 29:1743

    Article  CAS  Google Scholar 

  10. Asadullah M (2014) Renew Sustain Energy Rev 40:118

    Article  CAS  Google Scholar 

  11. Tsakoumis NE, Rønning M, Borg Ø, Rytter E, Holmen A (2010) Catal Today 154:162

    Article  CAS  Google Scholar 

  12. Chiche D, Diverchy C, Lucquin AC, Porcheron F, Defoort F (2013) Oil Gas Sci Technol Rev IFP Energies Nouv 68:707

    Article  CAS  Google Scholar 

  13. Markovs J, Clark K (2005) Optimized mercury removal in gas plants. Paper presented at the 84th annual GPA convention San Antonio, TX, March 13–16

  14. Borg Ø, Hammer N, Enger BC, Myrstad R, Lindvåg OA, Eri S, Skagseth TH, Rytter E (2011) J Catal 279:163

    Article  CAS  Google Scholar 

  15. Balonek CM, Lillebø AH, Rane S, Rytter E, Schmidt LD, Holmen A (2010) Catal Lett 138:8

    Article  CAS  Google Scholar 

  16. Zhang JC, Gao XH, Cao WL (2007) J Nat Gas Chem 16:377

    Article  CAS  Google Scholar 

  17. Pansare SS, Allison JD (2010) Appl Catal A Gen 387:224

    Article  CAS  Google Scholar 

  18. Ordomsky VV, Carvalho A, Legras B, Paul S, Virginie M, Sushkevich VL, Khodakov AY (2016) Catal Today. doi:10.1016/j.cattod.2015.12.015

    Google Scholar 

  19. Davis BH, Jacobs G, Ma W, Sparks D, Azzam K, Mohandas JC, Shafer W, Pendyala VRR (2011) Sensitivity of Fischer–Tropsch synthesis and water–gas shift catalysts to poisons from high-temperature high-pressure entrained-flow (EF) oxygen blown gasifier gasification of coal/biomass mixtures. DOE final report

  20. Ma W, Jacobs G, Sparks DE, Shafer WD, Hamdeh HH, Hopps SD, Pendyala VRR, Hu Y, Xiao Q, Davis BH (2016) Appl Catal A Gen 513:127

    Article  CAS  Google Scholar 

  21. Sparks DE, Jacobs G, Gnanamani MK, Pendyala VRR, Ma W, Kang J, Shafer WD, Keogh RA, Graham UM, Gao P, Davis BH (2013) Catal Today 215:67

    Article  CAS  Google Scholar 

  22. Ma W, Jacobs G, Shafer WD, Pendyala VRR, Xiao Q, Hu Y, Davis BH (2016) Catal Lett 146:1204

    Article  CAS  Google Scholar 

  23. Ma W, Jacobs G, Sparks DE, Pendyala VRR, Hopps SD, Thomas GA, Hamdeh HH, MacLennan A, Hu Y, Davis BH (2015) J Catal 326:149

    Article  CAS  Google Scholar 

  24. Pendyala VRR, Jacobs G, Bertaux C, Khalid S, Davis BH (2016) J Catal 337:80

    Article  CAS  Google Scholar 

  25. Pendyala VRR, Gnanamani MK, Jacobs G, Ma W, Shafer WD, Davis BH (2013) Appl Catal A Gen 468:38

    Article  CAS  Google Scholar 

  26. Pendyala VRR, Jacobs G, Ma W, Davis BH (2015) In: Davis BH, Occelli ML (eds) Fischer–Tropsch synthesis, catalysts, and catalysis: advances and applications. CRC Press, Boca Raton, ch. 14

  27. Ma W, Jacobs G, Thomas GA, Shafer WD, Sparks DE, Hamdeh HH, Davis BH (2015) ACS Catal 5:3124

    Article  CAS  Google Scholar 

  28. Gnanamani MK, Pendyala VRR, Jacobs G, Sparks DE, Shafer WD, Davis BH (2014) Catal Lett 144:1127

    Article  CAS  Google Scholar 

  29. Ma W, Jacobs G, Kang J, Sparks DE, Gnanamani MK, Pendyala VRR, Shafer WD, Keogh RA, Graham UM, Thomas GA, Davis BH (2013) Catal Today 215:73

    Article  CAS  Google Scholar 

  30. Pendyala VRR, Jacobs G, Hamdeh HH, Shafer WD, Sparks DE, Hopps SD, Davis BH (2014) Catal Lett 144:1624

    Article  CAS  Google Scholar 

  31. Ressler T (1998) J Synchrotron Radiat 5:118

    Article  CAS  Google Scholar 

  32. Leri AC, Marcus MA, Myneni SCB (2007) Geochim Cosmochim Acta 71:5834

    Article  CAS  Google Scholar 

  33. Sugiura C (1972) J Chem Phys 33:455

    CAS  Google Scholar 

  34. Sugiura C (1973) J Chem Phys 58:5444

    Article  CAS  Google Scholar 

  35. Obashi M, Matsukawa T (1983) J Phys Soc Jpn 3:1071

    Article  Google Scholar 

  36. Sugiura C (1990) Jpn J Appl Phys 29:2426

    Article  CAS  Google Scholar 

  37. Foulis DL, Pettifer RF, Sherwood P (1995) Phys B 208&209:68

    Article  Google Scholar 

  38. Wongjamras A, Schlachter AS, Stolte WC (2011) Energy Procedia 9:56

    Article  CAS  Google Scholar 

  39. Vedrinskii RV, Bugaev LA, Gegusin II, Kraizman VL, Novakovich AA, Prosandeev SA, Ruus RE, Maiste AA, Elango MA (1982) Solid State Commun 44:1401

    Article  CAS  Google Scholar 

  40. Paredes-Nunez A, Lorito D, Schuurman Y, Guilhaume N, Meunier FC (2015) J Catal 329:229

    Article  CAS  Google Scholar 

  41. Jacobs G, Sarkar A, Ji Y, Patterson PM, Das TK, Luo M, Davis BH (2006) Fischer–Tropsch synthesis: characterization of interactions between reduction promoters and Co for Co/Al2O3–based GTL catalysts. AIChE annual meeting, San Francisco, CA, Nov. 12–17

  42. Jacobs G, Ma W, Gao P, Todic B, Bhatelia T, Bukur DB, Davis BH (2013) Catal Today 214:100

    Article  CAS  Google Scholar 

  43. Saib AM, Borgna A, van de Loosdrecht J, van Berge PJ, Niemantsverdriet JW (2006) Appl Catal A Gen 312:12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work carried out at the CAER was supported by the Commonwealth of Kentucky and DOE Grant (DE-FC26-08NT0006368). Research described in this paper was performed in part at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pendyala, V.R.R., Jacobs, G., Ma, W. et al. Fischer–Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co. Catal Lett 146, 1858–1866 (2016). https://doi.org/10.1007/s10562-016-1820-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1820-8

Keywords

Navigation