Skip to main content
Log in

High Sensitivity Silicon Slit Detectors for 1 nm Powder XRD Size Detection Limit

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The limit of conventional X-ray powder diffraction for the detection of supported nanoparticles is usually taken to be 2–2.5 nm, at which size low signal to noise ratios make detection of particles of low weight loading and small particle size difficult. State of the art silicon strip detectors, however, are 2 orders of magnitude more sensitive than scintillation counters, and the greatly improved signal to noise ratio obtained in typical powder XRD scan times (tens of minutes to several hours) allows for the detection of much smaller nanoparticles than was previously possible. In this paper we demonstrate the use of a Si slit detector to characterize Au particles supported on carbon at sizes as small as 1.2 nm and weight loading as low as 0.33 %. At elevated scan speeds good corroboration between STEM and XRD is maintained. Thus, the latest generation XRD detector allows quick and simple access to the behaviorally rich 1–2 nm particle size range.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weibel A, Bouchet R, Boulc’ F, Knauth P (2005) Chem Mater 17:2378–2385

    Article  CAS  Google Scholar 

  2. Inoue M, Kimura M, Inui T (1999) Chem Commun 11:957–958

    Article  Google Scholar 

  3. Klug HP, Alexander LE (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edn. Wiley-VCH, New York, p 992

    Google Scholar 

  4. B.E. Warren (1969) X-ray diffraction. www.doverpublications.com

  5. Taguchi T (2006) Powder Diffr 21:97–101

    Article  CAS  Google Scholar 

  6. Haruta M (1997) Catal Today 36:153–166

    Article  CAS  Google Scholar 

  7. Lopez N, Nørskov JK (2002) J Am Chem Soc 124:11262–11263

    Article  CAS  Google Scholar 

  8. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405–408

    Article  Google Scholar 

  9. Haruta M, Saika K, Kobayashi T, Tsubota S, Nakahara Y (1988) Chem Express 3:159–162

    CAS  Google Scholar 

  10. Haruta M (2003) Chem Rec 3:75–87

    Article  CAS  Google Scholar 

  11. Hutchings GJ, Haruta M (2005) Appl Catal A 291:2–5

    Article  CAS  Google Scholar 

  12. Nkosi B, Adams MD, Coville NJ, Hutchings GJ (1991) J Catal 128:378–386

    Article  CAS  Google Scholar 

  13. Valden M, Lai X, Goodman DW (1998) Science 281:1647–1650

    Article  CAS  Google Scholar 

  14. Haruta M (2002) Cattech 6:102–115

    Article  CAS  Google Scholar 

  15. Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL (1997) Phys Rev Lett 79:1873–1876

    Article  CAS  Google Scholar 

  16. Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) J Catal 240:222–234

    Article  CAS  Google Scholar 

  17. Szczygiel R, Grybos P, Maj P, Tsukiyama A, Matsushita K, Taguchi T (2009) Nucl Instrum Methods Phys Res Sect A 607:229–232

    Article  CAS  Google Scholar 

  18. Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Electrochem Commun 21:65–68

    Article  CAS  Google Scholar 

  19. Bakenov Z, Taniguchi I (2010) Electrochem Commun 12:75–78

    Article  CAS  Google Scholar 

  20. Riello P, Canton P, Benedetti A (1998) Langmuir 14:6617–6619

    Article  CAS  Google Scholar 

  21. Block B, Bailar JC Jr (1951) J Am Chem Soc 73:4722–4725

    Article  CAS  Google Scholar 

  22. Minacheva LK, Gladkaya AS, Sakharova V, Don G, Shchelkov R, Porai-Koshits M, Neorg Zh (1988) Khim 233:683–687

    Google Scholar 

  23. Barnes SE (2011) Optimization of single and bimetallic noble metal catalysts by strong electrostatic adsorption. University of Illinois, Chicago

    Google Scholar 

  24. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Commun 7:801–802

    Article  Google Scholar 

  25. Maye MM, Lou Y, Zhong C-J (2000) Langmuir 16:7520–7523

    Article  CAS  Google Scholar 

  26. Maye MM, Zheng W, Leibowitz FL, Ly NK, Zhong C-J (1999) Langmuir 16:490–497

    Article  Google Scholar 

  27. Bradley SA, SInkler W, Blom DA, Bigelow W, Voyles PM, Allard LF (2012) Catal Lett 142:176–182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the NSF for Grant CBET-1160023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Regalbuto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connell, K., Regalbuto, J.R. High Sensitivity Silicon Slit Detectors for 1 nm Powder XRD Size Detection Limit. Catal Lett 145, 777–783 (2015). https://doi.org/10.1007/s10562-015-1479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1479-6

Keywords

Navigation