Skip to main content
Log in

Magnetic Carbon Nanofiber Networks as Support for Ionic Liquid Based Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, the ionic liquid (IL) 1-hexyl-3-methyl-imidazolium bromide (HMIm.Br) containing Pd suspended nanoparticles was supported on a nanostructured magnetically recoverable carbon nanofiber network. The magnetic material was prepared by a simple reaction of ethanol directly with a nanostructured hematite. SEM, XRD, Mössbauer, Raman, TG/DTA, BET surface area and magnetization analyses suggested that the network is based on carbon nanofibers with carbon coated magnetic Fe nanoparticles. These magnetic networks offer a high exposed carbon fiber area, which has a good interaction with the IL to form a thin layer. Preliminary studies with a Pd dispersed in supported IL as catalyst for the hydrogenation of 1,5-cyclooctadiene showed a membrane effect, which leads to an important increase on the selective hydrogenation of 1,5-cyclooctadiene to cyclooctene.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baudoux J, Perrigaud K, Madec P-J, Gaumont A-C, Dez I (2007) Green Chem 9:1346

    Article  CAS  Google Scholar 

  2. Van Doorslaer C, Wahlen J, Mertens P, Binnemans K, De Vos D (2010) Dalton Trans 39:8377

    Article  Google Scholar 

  3. Feher C, Krivan E, Hancsok J, Skoda-Foldes R (2012) Green Chem 14:403

    Article  CAS  Google Scholar 

  4. Ha HNT, Duc DT, Dao TV, Le MT, Riisager A, Fehrmann R (2012) Catal Commun 25:136

    Article  CAS  Google Scholar 

  5. Hagiwara H (2012) Synlett 23:837

    Article  CAS  Google Scholar 

  6. Hanna DG, Shylesh S, Werner S, Bell AT (2012) J Catal 292:166

    Article  CAS  Google Scholar 

  7. Jourshari MS, Mamaghani M, Tabatabaeian K, Shirini F (2012) J Iran Chem Soc 9:75

    Article  Google Scholar 

  8. Mikkola J-P, Virtanen P, Karhu H, Salmi T, Murzin DY (2006) Green Chem 8:197

    Article  CAS  Google Scholar 

  9. Mikkola J-PT, Virtanen PP, Kordás K, Karhu H, Salmi TO (2007) Appl Catal. A 328:68

    CAS  Google Scholar 

  10. Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Eur J Inorg Chem 2006:695

    Article  Google Scholar 

  11. Riisager A, Fehrmanna R, Haumannb M, Wasserscheidb P (2006) Top Catal 40:91

    Article  CAS  Google Scholar 

  12. Salminen E, Virtanen P, Kordás K, Mikkola J-P (2012) Catal Today 196:126

    Article  CAS  Google Scholar 

  13. Shylesh S, Hanna D, Werner S, Bell AT (2012) ACS Catal 2:487

    Article  CAS  Google Scholar 

  14. Virtanen P, Karhu H, Kordas K, Mikkola J-P (2007) Chem Eng Sci 62:3660

    Article  CAS  Google Scholar 

  15. Werner S, Szesni N, Kaiser M, Haumann M, Wasserscheid P (2012) Chem Eng Technol 35:1962

    Article  CAS  Google Scholar 

  16. Yao R, Wang H, Han J (2012) Frontiers Chem Sci Engg 6:239

    Article  CAS  Google Scholar 

  17. Breitenlechner S, Fleck M, Müller TE, Suppan A (2004) J Mol Catal A: Chem 214:175

    Article  CAS  Google Scholar 

  18. Carlin RT, Cho TH, Fuller J (1998) Proceedings of the Eleventh International Symposium on Molten Salts Xi 98:180

  19. Kim DW, Chi DY (2004) Angew Chem Int Ed 43:483

    Article  CAS  Google Scholar 

  20. Mehnert CP (2005) Chem Eur J 11:50

    Article  Google Scholar 

  21. Riisager A, Fehrmann R, Flicker S, van Hal R, Haumann M, Wasserscheid P (2005) Angew Chem Int Ed 44:815

    Article  CAS  Google Scholar 

  22. Shi F, Zhang Q, Li D, Deng Y (2005) Chem Eur J 11:5279

    Article  CAS  Google Scholar 

  23. Valkenberg MH, de Castro C, Holderich WF (2002) Green Chem 4:88

    Article  CAS  Google Scholar 

  24. Gadenne B, Hesemann P, Moreau JJE (2004) Chem Commun 15:1768

    Article  Google Scholar 

  25. Kume Y, Qiao K, Tomida D, Yokoyama C (2008) Catal Commun 9:369

    Article  CAS  Google Scholar 

  26. Polshettiwar V, Molnár Á (2007) Tetrahedron 63:6949

    Article  CAS  Google Scholar 

  27. Zheng X, Luo S, Zhang L, Cheng J-P (2009) Green Chem 11:455

    Article  CAS  Google Scholar 

  28. Burguete MI, Galindo F, Garcia-Verdugo E, Karbass N, Luis SV (2007) Chem Commun 29:3086

    Article  Google Scholar 

  29. Burguete MI, Erythropel H, Garcia-Verdugo E, Luis SV, Sans V (2008) Green Chem 10:401

    Article  CAS  Google Scholar 

  30. Tao R, Miao S, Liu Z, Xie Y, Han B, An G, Ding K (2009) Green Chem 11:96

    Article  CAS  Google Scholar 

  31. Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G (2004) Angew Chem Int Ed 43:1397

    Article  CAS  Google Scholar 

  32. Selvam T, Machoke A, Schwieger W (2012) Appl Catal A 445–446:92

    Article  Google Scholar 

  33. Nassor ECO, Tristão JC, dos Santos EN, Moura FCC, Lago RM, Araujo MH (2012) J Mol Catal A 363–364:74

    Article  Google Scholar 

  34. Oliveira AAS, Tristão JC, Ardisson JD, Dias A, Lago RM (2011) Appl Catal B 105:163

    Article  CAS  Google Scholar 

  35. Teixeira APC, Tristão JC, Araujo MH, Oliveira LCA, Moura FCC, Ardisson JD, Amorim CC, Lago RM (2012) J Braz Chem Soc 23:1579

    Article  CAS  Google Scholar 

  36. Tristão J, Ardisson J, Sansiviero M, Lago R (2009) LACAME 2008:15

    Google Scholar 

  37. Abu-Reziq R, Alper H, Wang D, Post ML (2006) J Am Chem Soc 128:5279

    Article  CAS  Google Scholar 

  38. Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Appl Catal A 338:52

    Article  CAS  Google Scholar 

  39. Rossi LM, Silva FP, Vono LLR, Kiyohara PK, Duarte EL, Itri R, Landers R, Machado G (2007) Green Chem 9:379

    Article  CAS  Google Scholar 

  40. Shekaari H, Mansoori Y, Sadeghi R (2008) J Chem Thermodyn 40:852

    Article  CAS  Google Scholar 

  41. Nockemann P, Binnemans K, Driesen K (2005) Chem Phys Lett 415:131

    Article  CAS  Google Scholar 

  42. Ramos-Fernández EV, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2009) Catal Lett 133:267

    Article  Google Scholar 

  43. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Carbon 43:1731

    Article  CAS  Google Scholar 

  44. Shimada T, Sugai T, Fantini C, Souza M, Cançado LG, Jorio A, Pimenta MA, Saito R, Grüneis A, Dresselhaus G, Dresselhaus MS, Ohno Y, Mizutani T, Shinohara H (2005) Carbon 43:1049

    Article  CAS  Google Scholar 

  45. Moura FCC, Lago RM, dos Santos EN, Araujo MH (2002) Catal Commun 3:541

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided from FAPEMIG, PRPq/UFMG, CNPq, CAPES, and PETROBRAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Helena Araujo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassor, E.C.O., Tristão, J.C., Oliveira, H.S. et al. Magnetic Carbon Nanofiber Networks as Support for Ionic Liquid Based Catalyst. Catal Lett 145, 505–510 (2015). https://doi.org/10.1007/s10562-014-1374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1374-6

Keywords

Navigation