Skip to main content
Log in

High-entropy oxide nanofibers as catalysts to oxygen evolution reaction

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The need to replace electrodes based on noble metals is a necessity for the popularization of strategic energy technologies. In the catalysis of the oxygen evolution reaction (OER), where iridium (Ir) and ruthenium (Ru) are the main references, transition metals have gained prominence for aligning good efficiency and low cost, in addition to the possibility of obtaining them in the most varied forms (oxide, hydroxide, alloys, and composites). In this work, the synthesis of high-entropy oxide (HEO) nanofibers of composition (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O obtained by solution blow spinning (SBS) is reported for the first time. It was found that the time of heat treatment has a significant influence on obtaining impurity-free HEO. In practice, a residence time varying between 2 and 5 h at the calcination threshold temperature leads to the formation of CuO as a secondary phase. The obtained nanofibers had an average diameter of 185 nm and are made up of cohesive nanoparticles of different sizes and have a highly rough surface texture. The electrocatalytic performance of the OER was mainly influenced by the presence of the secondary phase, which tends to delay the catalytic activity and increase the electrode impedance. For the purest phase sample treated for 9 h at 900 °C (HEO-9), the electrocatalyst reveals a low overpotential of 310 mV vs. RHE at J = 10 mA cm−2 and a Tafel slope of 54 mV dec−1. These results are superior to other HEO with different morphologies reported in the literature. Furthermore, it was verified that the surface roughness of these nanofibers contributes to the excellent operational stability of the electrocatalyst. Hence, the advantages of nanofibrous structures over other HEO morphologies were suggested and discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Henni S, Schäffer M, Fischer P, Weinhardt C, Staudt P (2023) Bottom-up system modeling of battery storage requirements for integrated renewable energy systems. Appl Energy 333:120531. https://doi.org/10.1016/j.apenergy.2022.120531

    Article  Google Scholar 

  2. Li X, Zhao L, Yu J, Liu X, Zhang X, Liu H, Zhou W (2020) Water splitting: from electrode to green energy system. Nano-Micro Lett 12:131. https://doi.org/10.1007/s40820-020-00469-3

    Article  CAS  Google Scholar 

  3. Fu X, Shi R, Jiao S, Li M, Li Q (2022) Structural design for electrocatalytic water splitting to realize industrial-scale deployment: strategies, advances, and perspectives. J Energy Chem 70:129–153. https://doi.org/10.1016/j.jechem.2022.02.010

    Article  CAS  Google Scholar 

  4. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365. https://doi.org/10.1039/C6CS00328A

    Article  CAS  Google Scholar 

  5. Jamesh M-I, Sun X (2018) Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting—a review. J Power Sour 400:31–68. https://doi.org/10.1016/j.jpowsour.2018.07.125

    Article  CAS  Google Scholar 

  6. Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1:0003. https://doi.org/10.1038/s41570-016-0003

    Article  CAS  Google Scholar 

  7. Gonçalves JM, Ghorbani A, Ritter TG, Lima IS, Tamadoni Saray M, Phakatkar AH, Silva VD, Pereira RS, Yarin AL, Angnes L, Shahbazian-Yassar R (2023) Multimetallic glycerolate as a precursor template of spherical porous high-entropy oxide microparticles. J Colloid Interface Sci 641:643–652. https://doi.org/10.1016/j.jcis.2023.03.089

    Article  CAS  Google Scholar 

  8. Li J, Zheng G (2017) One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv Sci 4:1600380. https://doi.org/10.1002/advs.201600380

    Article  CAS  Google Scholar 

  9. Lu F, Zhou M, Zhou Y, Zeng X (2017) First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small 13:1701931. https://doi.org/10.1002/smll.201701931

    Article  CAS  Google Scholar 

  10. Kim JS, Kim B, Kim H, Kang K (2018) Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv Energy Mater 8:1702774. https://doi.org/10.1002/aenm.201702774

    Article  CAS  Google Scholar 

  11. Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria J-P (2015) Entropy-stabilized oxides. Nat Commun 6:8485. https://doi.org/10.1038/ncomms9485

    Article  CAS  Google Scholar 

  12. Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, Hahn H, Brezesinski T, Breitung B (2021) High-entropy energy materials: challenges and new opportunities. Energy Environ Sci 14:2883–2905. https://doi.org/10.1039/D1EE00505G

    Article  Google Scholar 

  13. Sun Z, Zhao Y, Sun C, Ni Q, Wang C, Jin H (2022) High entropy spinel-structure oxide for electrochemical application. Chem Eng J 431:133448. https://doi.org/10.1016/j.cej.2021.133448

    Article  CAS  Google Scholar 

  14. Gao Y, Liu Y, Yu H, Zou D (2022) High-entropy oxides for catalysis: Status and perspectives. Appl Catal A Gen 631:118478. https://doi.org/10.1016/j.apcata.2022.118478

    Article  CAS  Google Scholar 

  15. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science (80-) 355:4998. https://doi.org/10.1126/science.aad4998

    Article  Google Scholar 

  16. Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov JK (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 328:36–42. https://doi.org/10.1016/j.jcat.2014.12.033

    Article  CAS  Google Scholar 

  17. Yao D, Gu L, Zuo B, Weng S, Deng S, Hao W (2021) A strategy for preparing high-efficiency and economical catalytic electrodes toward overall water splitting. Nanoscale 13:10624–10648. https://doi.org/10.1039/D1NR02307A

    Article  CAS  Google Scholar 

  18. Silva VD, Simões TA, Grilo JPF, Medeiros ES, Macedo DA (2020) Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis. J Mater Sci 55:6648–6659. https://doi.org/10.1007/s10853-020-04481-1

    Article  CAS  Google Scholar 

  19. Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LHC (2009) Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci 113:2322–2330. https://doi.org/10.1002/app.30275

    Article  CAS  Google Scholar 

  20. Jia C, Li L, Song J, Li Z, Wu H (2021) Mass production of ultrafine fibers by a versatile solution blow spinning method. Acc Mater Res 2:432–446. https://doi.org/10.1021/accountsmr.1c00040

    Article  CAS  Google Scholar 

  21. Nascimento EP, Araujo RN, Firmino HCT, Mastelaro VR, Loureiro FJA, Neves GA, Medeiros ES, Menezes RR (2022) Parallel-solution blow spun Al-SnO2/F-SnO2 fibers as an efficient room temperature ethanol sensor. Ceram Int 48:13163–13174. https://doi.org/10.1016/j.ceramint.2022.01.193

    Article  CAS  Google Scholar 

  22. Silva VD, Silva RM, Grilo JPF, Loureiro FJA, Fagg DP, Medeiros ES, Macedo DA (2018) Electrochemical assessment of novel misfit Ca-cobaltite-based composite SOFC cathodes synthesized by solution blow spinning. J Eur Ceram Soc 38:2562–2569. https://doi.org/10.1016/j.jeurceramsoc.2018.01.044

    Article  CAS  Google Scholar 

  23. Wang H, Zhang X, Wang N, Li Y, Feng X, Huang Y, Zhao C, Liu Z, Fang M, Ou G, Gao H, Li X, Wu H (2017) Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Sci Adv 3:e1603170. https://doi.org/10.1126/sciadv.1603170

    Article  CAS  Google Scholar 

  24. Santos AM, Medeiros EL, Blaker JJ, Medeiros ES (2016) Aqueous solution blow spinning of poly(vinyl alcohol) micro- and nanofibers. Mater Lett 176:122–126. https://doi.org/10.1016/j.matlet.2016.04.101

    Article  CAS  Google Scholar 

  25. Sarkar A, Velasco L, Wang D, Wang Q, Talasila G, de Biasi L, Kübel C, Brezesinski T, Bhattacharya SS, Hahn H, Breitung B (2018) High entropy oxides for reversible energy storage. Nat Commun 9:3400. https://doi.org/10.1038/s41467-018-05774-5

    Article  CAS  Google Scholar 

  26. Fracchia M, Coduri M, Manzoli M, Ghigna P, Tamburini UA (2022) Is configurational entropy the main stabilizing term in rock-salt Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide? Nat Commun 13:2977. https://doi.org/10.1038/s41467-022-30674-0

    Article  CAS  Google Scholar 

  27. Sarkar A, Wang Q, Schiele A, Chellali MR, Bhattacharya SS, Wang D, Brezesinski T, Hahn H, Velasco L, Breitung B (2019) High-entropy oxides: fundamental aspects and electrochemical properties. Adv Mater 31:1806236. https://doi.org/10.1002/adma.201806236

    Article  CAS  Google Scholar 

  28. Wang D, Liu Z, Du S, Zhang Y, Li H, Xiao Z, Chen W, Chen R, Wang Y, Zou Y, Wang S (2019) Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J Mater Chem A 7:24211–24216. https://doi.org/10.1039/C9TA08740K

    Article  CAS  Google Scholar 

  29. Einert M, Mellin M, Bahadorani N, Dietz C, Lauterbach S, Hofmann JP (2022) Mesoporous high-entropy oxide thin films: electrocatalytic water oxidation on high-surface-area spinel (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4 electrodes. ACS Appl Energy Mater 5:717–730. https://doi.org/10.1021/acsaem.1c03190

    Article  CAS  Google Scholar 

  30. Zhao S, Wu H, Yin R, Wang X, Zhong H, Fu Q, Wan W, Cheng T, Shi Y, Cai G, Jiang C, Ren F (2021) Preparation and electrocatalytic properties of (FeCrCoNiAl0.1)Ox high-entropy oxide and NiCo-(FeCrCoNiAl0.1)Ox heterojunction films. J Alloys Compd 868:159108. https://doi.org/10.1016/j.jallcom.2021.159108

    Article  CAS  Google Scholar 

  31. Zhang Y, Lu T, Ye Y, Dai W, Zhu Y, Pan Y (2020) Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for co-prosperity of efficiency and stability in an oxygen evolution reaction. ACS Appl Mater Interfaces 12:32548–32555. https://doi.org/10.1021/acsami.0c05916

    Article  CAS  Google Scholar 

  32. Zhang Y, Dai W, Zhang P, Lu T, Pan Y (2021) In-situ electrochemical tuning of (CoNiMnZnFe)3O3.2 high-entropy oxide for efficient oxygen evolution reactions. J Alloys Compd 868:159064. https://doi.org/10.1016/j.jallcom.2021.159064

    Article  CAS  Google Scholar 

  33. Silva VD, Simões TA, Loureiro FJA, Fagg DP, Figueiredo FML, Medeiros ES, Macedo DA (2019) Solution blow spun nickel oxide/carbon nanocomposite hollow fibres as an efficient oxygen evolution reaction electrocatalyst. Int J Hydr Energy 44:14877–14888. https://doi.org/10.1016/j.ijhydene.2019.04.073

    Article  CAS  Google Scholar 

  34. Usharani NJ, Shringi R, Sanghavi H, Subramanian S, Bhattacharya SS (2020) Role of size, alio-/multi-valency and non-stoichiometry in the synthesis of phase-pure high entropy oxide (Co, Cu, Mg, Na, Ni, Zn)O. Dalt Trans 49:7123–7132. https://doi.org/10.1039/D0DT00958J

    Article  CAS  Google Scholar 

  35. Massarotti V, Capsoni D, Bini M, Altomare A, Molitemi AGG (1998) X-ray powder diffraction ab initio structure solution of materials from solid state synthesis: the copper oxide case. Zeitsch Krist—Cryst Mater 213:259–265. https://doi.org/10.1524/zkri.1998.213.5.259

    Article  CAS  Google Scholar 

  36. Mao A, Xiang H-Z, Zhang Z-G, Kuramoto K, Zhang H, Jia Y (2020) A new class of spinel high-entropy oxides with controllable magnetic properties. J Magn Magn Mater 497:165884. https://doi.org/10.1016/j.jmmm.2019.165884

    Article  CAS  Google Scholar 

  37. Indrayana IPT, Tjuana LA, Tuny MT (2019) Kurnia, Nanostructure and optical properties of Fe3O4: effect of calcination temperature and dwelling time. J Phys Conf Ser 1341:082044. https://doi.org/10.1088/1742-6596/1341/8/082044

    Article  CAS  Google Scholar 

  38. Silva VD, Ferreira LS, Simões TA, Medeiros ES, Macedo DA (2019) 1D hollow MFe2O4 (M = Cu Co, Ni) fibers by solution blow spinning for oxygen evolution reaction. J Colloid Interface Sci 540:59–65. https://doi.org/10.1016/j.jcis.2019.01.003

    Article  CAS  Google Scholar 

  39. Li M, Xiong Y, Liu X, Bo X, Zhang Y, Han C, Guo L (2015) Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7:8920–8930. https://doi.org/10.1039/C4NR07243J

    Article  CAS  Google Scholar 

  40. Ahn SH, Choi I, Park H-Y, Hwang SJ, Yoo SJ, Cho E, Kim H-J, Henkensmeier D, Nam SW, Kim S-K, Jang JH (2013) Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis. Chem Commun 49:9323. https://doi.org/10.1039/c3cc44891f

    Article  CAS  Google Scholar 

  41. Liu F, Yu M, Chen X, Li J, Liu H, Cheng F (2022) Defective high-entropy rocksalt oxide with enhanced metal-oxygen covalency for electrocatalytic oxygen evolution. Chin J Catal 43:122–129. https://doi.org/10.1016/S1872-2067(21)63794-4

    Article  Google Scholar 

  42. Li G, Anderson L, Chen Y, Pan M, AbelChuang P-Y (2018) New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media. Sustain Energy Fuels 2:237–251. https://doi.org/10.1039/C7SE00337D

    Article  CAS  Google Scholar 

  43. Matsumoto Y, Sato E (1986) Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater Chem Phys 14:397–426. https://doi.org/10.1016/0254-0584(86)90045-3

    Article  CAS  Google Scholar 

  44. Silva VD, Raimundo RA, Simões TA, Loureiro FJA, Fagg DP, Morales MA, Macedo DA, Medeiros ES (2021) Nonwoven Ni–NiO/carbon fibers for electrochemical water oxidation. Int J Hydr Energy 46:3798–3810. https://doi.org/10.1016/j.ijhydene.2020.10.156

    Article  CAS  Google Scholar 

  45. Bhat KS, Nagaraja HS (2020) In situ synthesis of copper sulfide-nickel sulfide arrays on three-dimensional nickel foam for overall water splitting. ChemistrySelect 5:2455–2464. https://doi.org/10.1002/slct.202000026

    Article  CAS  Google Scholar 

  46. Tian J, Cheng N, Liu Q, Sun X, He Y, Asiri AM (2015) Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting. J Mater Chem A 3:20056–20059. https://doi.org/10.1039/C5TA04723D

    Article  CAS  Google Scholar 

  47. Bae SH, Kim JE, Randriamahazaka H, Moon SY, Park JY, Oh IK (2017) Seamlessly conductive 3D nanoarchitecture of core-shell Ni–Co nanowire network for highly efficient oxygen evolution. Adv Energy Mater 7:1601492. https://doi.org/10.1002/aenm.201601492

    Article  CAS  Google Scholar 

  48. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987. https://doi.org/10.1021/ja407115p

    Article  CAS  Google Scholar 

  49. Doyle RL, Godwin IJ, Brandon MP, Lyons MEG (2013) Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys Chem Chem Phys 15:13737. https://doi.org/10.1039/c3cp51213d

    Article  CAS  Google Scholar 

  50. Yu L, Zhou H, Sun J, Qin F, Luo D, Xie L, Yu F, Bao J, Li Y, Yu Y, Chen S, Ren Z (2017) Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy 41:327–336. https://doi.org/10.1016/j.nanoen.2017.09.045

    Article  CAS  Google Scholar 

  51. Lourenço AA, Silva VD, da Silva RB, Silva UC, Chesman C, Salvador C, Simões TA, Macedo DA, da Silva FF (2021) Metal-organic frameworks as template for synthesis of Mn3+/Mn4+ mixed valence manganese cobaltites electrocatalysts for oxygen evolution reaction. J Colloid Interface Sci 582:124–136. https://doi.org/10.1016/j.jcis.2020.08.041

    Article  CAS  Google Scholar 

  52. Swierk JR, Klaus S, Trotochaud L, Bell AT, Tilley TD (2015) Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (Oxy)hydroxide catalysts. J Phys Chem C 119:19022–19029. https://doi.org/10.1021/acs.jpcc.5b05861

    Article  CAS  Google Scholar 

  53. Eftekhari A (2017) Tuning the electrocatalysts for oxygen evolution reaction. Mater Today Energy 5:37–57. https://doi.org/10.1016/j.mtener.2017.05.002

    Article  Google Scholar 

  54. Qu M, Ding X, Shen Z, Cui M, Oropeza FE, Gorni G, de la Peña O’Shea VA, Li W, Qi D-C, Zhang KHL (2021) Tailoring the electronic structures of the La 2 NiMnO6 double perovskite as efficient bifunctional oxygen electrocatalysis. Chem Mater 33:2062–2071. https://doi.org/10.1021/acs.chemmater.0c04527

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the CAPES/Brazil (finance code 001) and CNPq/Brazil (Grants Nos. 202290/2020-4, 305065/2022-0, 309430/2019-4 and 151879/2022-2). The authors are also grateful for the support of the UFPB through the internal call for research productivity PROPESQ/PRPG/ UFPB No. 04/2021, project no PVF14855-2021. T.A. Simões thanks Projeto Inova Nióbio 2022 (Processo 408905/2022-0), Projeto APQ-Emergentes 2022-29/2022 (Processo APQ-1251-3.03/22), CNPq (Processo 308353/2022-6), and FACEPE. V. D. Silva thank to DEMAT/UFRN for FESEM support.

Author information

Authors and Affiliations

Authors

Contributions

V.D.S.was involved in investigation, formal analysis, conceptualization, methodology, validation, writing—original draft, and writing—review and editing. R.A.R.contributed to formal analysis, methodology, and data curation. T.R.S.was involved in formal analysis and methodology. T.A.S. was involved in formal analysis, data curation, and writing—review and editing. D.A.M.contributed to funding acquisition, validation, supervision, writing—review and editing. E.S.M.contributed to funding acquisition, validation, supervision, writing—review and editing.

Corresponding authors

Correspondence to Daniel A. Macedo or Eliton S. Medeiros.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

There are no ethical issues involved in this study.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, V.D., Raimundo, R.A., Silva, T.R. et al. High-entropy oxide nanofibers as catalysts to oxygen evolution reaction. J Mater Sci 58, 17141–17153 (2023). https://doi.org/10.1007/s10853-023-09067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09067-1

Navigation