Skip to main content
Log in

Effects of Nanoparticle Size and Metal/Support Interactions in Pt-Catalyzed Methanol Oxidation Reactions in Gas and Liquid Phases

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We compare catalytic methanol oxidation reactions in the gas and liquid phases by focusing on the kinetic effects of platinum nanoparticle size and metal/support interactions. Under the reaction conditions at 60 °C, methanol can be oxidized to multiple products including carbon dioxide (full-oxidation product), formaldehyde (partial-oxidation product) and methyl formate (partial-oxidation and coupling product). We use 2, 4, 6 and 8 nm platinum nanoparticles supported on mesoporous silica as catalysts to study the size effect, and 2.5 nm platinum nanoparticles supported on mesoporous SiO2, Co3O4, MnO2, Fe2O3, NiO and CeO2 to study the metal/oxide interface effect. We find that all three products are formed with comparable selectivities in the gas phase, but in the liquid phase formaldehyde is the dominant product. While the influence of size on activity is not substantial in the gas phase, the liquid-phase reaction rates monotonically increase by a factor of 6 in the size range of 2–8 nm. The reaction rates in the gas phase are dramatically affected by the strong interactions between the platinum nanoparticles and transition metal oxide supports. While the Pt/MnO2 is 135 times less active, the Pt/CeO2 is 12 times more active, both compared to the Pt/SiO2. However in the liquid phase, the support effect is less significant, with the most active catalyst Pt/MnO2 exhibiting an enhancement factor of 2.5 compared to the Pt/SiO2. Our results suggest that the kinetic effects of platinum nanoparticle size and metal/support interactions can be totally different between the solid/gas and solid/liquid interfaces even for the same chemical reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rylander P (2012) Catalytic hydrogenation over platinum metals. Elsevier, Amsterdam

    Google Scholar 

  2. Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. Wiley, Hoboken

    Google Scholar 

  3. Yu W, Porosoff MD, Chen JG (2012) Chem Rev 112:5780–5817

    Article  CAS  Google Scholar 

  4. Shao MH, Peles A, Shoemaker K (2011) Nano Lett 11:3714–3719

    Article  CAS  Google Scholar 

  5. Rioux R, Hsu B, Grass M, Song H, Somorjai GA (2008) Catal Lett 126:10–19

    Article  CAS  Google Scholar 

  6. Grass ME, Rioux RM, Somorjai GA (2009) Catal Lett 128:1–8

    Article  CAS  Google Scholar 

  7. Wang H, Wang Y, Zhu Z, Sapi A, An K, Kennedy G, Michalak WD, Somorjai GA (2013) Nano Lett 13:2976–2979

    Article  CAS  Google Scholar 

  8. Cargnello M, Doan-Nguyen VVT, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Science 341:771–773

    Article  CAS  Google Scholar 

  9. Yoon K, Yang Y, Lu P, Wan D, Peng H-C, Masias KS, Fanson PT, Campbell CT, Xia Y (2012) Angew Chem Int Ed 51:9543–9546

    Article  CAS  Google Scholar 

  10. Chen G, Zhao Y, Fu G, Duchesne PN, Gu L, Zheng Y, Weng X, Chen M, Zhang P, Pao C-W, Lee J-F, Zheng N (2014) Science 344:495–499

    Article  CAS  Google Scholar 

  11. Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas AP, Stamenkovic VR, Markovic NM (2013) Nat Chem 5:300–306

    Article  Google Scholar 

  12. An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman AE, Somorjai GA (2013) J Am Chem Soc 135:16689–16696

    Article  CAS  Google Scholar 

  13. An K, Alayoglu S, Musselwhite N, Na K, Somorjai GA (2014) J Am Chem Soc 136:6830–6833

    Article  CAS  Google Scholar 

  14. Wang H, Sapi A, Thompson CM, Liu F, Zherebetskyy D, Krier JM, Carl LM, Cai XJ, Wang LW, Somorjai GA (2014) J Am Chem Soc 136:10515–10520

    Article  CAS  Google Scholar 

  15. Kleitz F, Choi SH and Ryoo R (2003) Chem Commun 39:2136–2137

  16. Ren Y, Ma Z, Qian L, Dai S, He H, Bruce PG (2009) Catal Lett 131:146–154

    Article  CAS  Google Scholar 

  17. Taguchi A, Schuth F (2005) Micropor Mesopor Mat 77:1–45

    Article  CAS  Google Scholar 

  18. Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  19. Schmidt-Winkel P, Lukens WW, Zhao DY, Yang PD, Chmelka BF, Stucky GD (1999) J Am Chem Soc 121:254–255

    Article  CAS  Google Scholar 

  20. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) J Phys Chem B 109:2192–2202

    Article  CAS  Google Scholar 

  21. Tsung C-K, Kuhn JN, Huang W, Aliaga C, Hung L-I, Somorjai GA, Yang P (2009) J Am Chem Soc 131:5816–5822

    Article  CAS  Google Scholar 

  22. Tu WF, Chin YH (2014) J Catal 313:55–69

    Article  CAS  Google Scholar 

  23. McCabe RW, McCready DF (1986) J Phys Chem 90:1428–1435

    Article  CAS  Google Scholar 

  24. Kaichev VV, Popova GY, Chesalov YA, Saraev AA, Zemlyanov DY, Beloshapkin SA, Knop-Gericke A, Schlogl R, Andrushkevich TV, Bukhtiyarov VI (2014) J Catal 311:59–70

    Article  CAS  Google Scholar 

  25. Sapi A et al (2010) Fundamental aspects of the synthesis, modification, characterization and catalytic testing of various silicate forms and metal nanoparticle-mesoporous silicate composite materials, Silica and silicates in modern catalysis, Chapter 9, 187–212. ISBN: 978-81-7895-455-4. Transworld Research Network

  26. Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) J Phys Chem B 109:14433–14440

    Article  CAS  Google Scholar 

  27. Tritsaris G, Greeley J, Rossmeisl J, Nørskov JK (2011) Catal Lett 141:909–913

    Article  CAS  Google Scholar 

  28. Joo SH, Kwon K, You DJ, Pak C, Chang H, Kim JM (2009) Electrochim Acta 54:5746–5753

    Article  CAS  Google Scholar 

  29. Doornkamp C, Ponec V (2000) J Mol Catal A 162:19–32

    Article  CAS  Google Scholar 

  30. Vayssilov GN, Lykhach Y, Migani A, Staudt T, Petrova GP, Tsud N, Skala T, Bruix A, Illas F, Prince KC, Matolin V, Neyman KM, Libuda J (2011) Nat Mater 10:310–315

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Director, Office of Basic Energy Sciences, Materials Science and Engineering Division and the Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. H.W. acknowledges support from the Philomathia Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor A. Somorjai.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., An, K., Sapi, A. et al. Effects of Nanoparticle Size and Metal/Support Interactions in Pt-Catalyzed Methanol Oxidation Reactions in Gas and Liquid Phases. Catal Lett 144, 1930–1938 (2014). https://doi.org/10.1007/s10562-014-1347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1347-9

Keywords

Navigation