Skip to main content
Log in

Multivariate Method for Transesterification Reaction of Soybean Oil Using Calcined Mg–Al Layered Double Hydroxide as Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A multivariate method for transesterification of soybean oil to produce biodiesel was performed using calcined Mg–Al layered double hydroxide as catalyst. The conversion reached 95.4 % using the optimal conditions. The performance of the catalyst for acid oil and high water content was evaluated. The catalysts were characterized and evaluated for their stability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lam MK, Lee KT, Mohamed AR (2010) Biotechnol Adv 28:500

    Article  CAS  Google Scholar 

  2. Cao F, Chen Y, Zhai F, Li J, Wang J, Wang X, Wang S, Zhu W (2008) Biotechnol Bioeng 101(1):93

    Article  CAS  Google Scholar 

  3. Refaat AA (2010) Int J Environ Sci Technol 7(1):183

    Article  CAS  Google Scholar 

  4. Kouzu M, Yamanaka SY, Hidaka JS, Tsunomori M (2009) Appl Catal A 355:94

    Article  CAS  Google Scholar 

  5. Xu C, Enache DI, Rhys Lloyd R, Knight DW, Bartley JK, Hutchings GJ (2010) Catal Lett 138:1

    Article  CAS  Google Scholar 

  6. Li E, Rudolph V (2008) Energy Fuels 22:145

    Article  CAS  Google Scholar 

  7. Meher L, Vidyasagar D, Naik S (2006) Renew Sustain Energy Rev 10:248

    Article  CAS  Google Scholar 

  8. Valle PWPA, Rezende TF, Souza RA, Fortes ICP, Pasa VMD (2009) Energy Fuels 3:5219

    Article  Google Scholar 

  9. Neto BB, Scarminio IS, Bruns RE (2001) Como fazer experimentos: pesquisa e desenvolvimento na ciência e na indústria. Editora da Unicamp, Campinas

    Google Scholar 

  10. Noordin M, Venkatesh V, Sharif S, Elting S, Abdullah A (2004) J Mater Process Technol 145:46

    Article  CAS  Google Scholar 

  11. Khosravi A, Esmhosseini M, Jalili J, Khezri S (2012) J Incl Phenom Macrocycl Chem 74:383

    Article  CAS  Google Scholar 

  12. Pavel OD, Tichit D, Marcu I-C (2012) Appl Clay Sci 61:52

    Article  CAS  Google Scholar 

  13. Zhang F, Xiang X, Li F, Duan X (2008) Catal Surv Asia 12:253

    Article  CAS  Google Scholar 

  14. Wang Y-B, Jehng J-M (2011) Chem Eng J 175:548

    Article  CAS  Google Scholar 

  15. Silva CCCM, Ribeiro NFP, Souza MMVM, Aranda DAG (2010) Fuel Process Technol 91:205

    Article  CAS  Google Scholar 

  16. Gao L, Teng G, Xiao G, Wei R (2010) Biomass Bioenerg 34:1283

    Article  CAS  Google Scholar 

  17. Shumaker JL, Crofcheck C, Tackett SA, Santillan-Jimenez E, Crocker M (2007) Catal Lett 115:56

    Article  CAS  Google Scholar 

  18. Vaccari A (1998) Catal Today 41:53

    Article  CAS  Google Scholar 

  19. Crepaldi LE, Valim JB (1998) Quim Nova 21:300

    Article  CAS  Google Scholar 

  20. Centi G, Perathoner S (2008) Microporous Mesoporous Mater 107:3

    Article  CAS  Google Scholar 

  21. Leroux F, Taviot-Guého C (2005) J Mater Chem 15:3628

    Article  CAS  Google Scholar 

  22. Forano C, Hibino T, Leroux F, Taviot-Guého C (2006) Handbook of clay science. Elsevier, Amsterdam

    Google Scholar 

  23. Instituto Adolfo Lutz (2008) Métodos físico-químicos para análise de alimentos, 4th edn. ANVISA, São Paulo

    Google Scholar 

  24. Reichle WT (1986) Solid State Ion 22:135

    Article  CAS  Google Scholar 

  25. Knothe G (2000) J Am Oil Chem Soc 77:489

    Article  CAS  Google Scholar 

  26. Tariq M, Ali S, Ahmad F, Ahmad M, Zafar M, Khalid N, Khan MA (2011) Fuel Process Technol 92:336

    Article  CAS  Google Scholar 

  27. Sousa FP, Luciano MA, Pasa VMD (2013) Fuel Process Technol 109:133

    Article  CAS  Google Scholar 

  28. Teófilo RF, Ferreira MMC (2006) Quim Nova 29:338

    Article  Google Scholar 

  29. Vriesmann LC, Teófilo RF, Petkowicza CLO (2011) Carbohydr Polym 84(4):1230–1236

    Article  CAS  Google Scholar 

  30. Crepaldi EL, Tronto J, Cardoso LP, Valim JB (2002) Colloid Surf A 211:103

    Article  CAS  Google Scholar 

  31. dos Reis MJ, Silvério F, Tronto J, Valim JB (2004) J Phys Chem Solids 65:487

    Article  Google Scholar 

  32. Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173

    Article  CAS  Google Scholar 

  33. Roelofs JCAA, van Bokhoven JA, van Dillen AJ, Geus JW, de Jong KP (2002) Chem Eur J 8:5571

    Article  CAS  Google Scholar 

  34. Di Cosimo JI, Díez VK, Xu M, Iglesia E, Apesteguía CR (1998) J Catal 178:499

    Article  Google Scholar 

  35. Campos-Molina MJ, Santamaria-Gonzalez J, Merida-Robles J, Moreno-Tost R, Albuquerque MCG, Bruque-Gamez S, Rodriguez-Castellon E, Jimenez-Lopez A, Maireles-Torres P (2010) Energy Fuels 24:979

    Article  CAS  Google Scholar 

  36. Hibino T, Yamashita Y, Kosuge K, Tsunashima A (1995) Clays and Clay Miner. 43:427

  37. IUPAC Recommendations (1985) Pure Appl Chem 57:603

    Google Scholar 

  38. Macala GS, Robertson AW, Johnson CL, Day ZB, Lewis RS, White MG, Iretskii AV, Ford PC (2008) Catal Lett 122:205

    Article  CAS  Google Scholar 

  39. Díez VK, Di Cosimo JI, Apesteguía CR (2008) Appl Catal A 345:143

    Article  Google Scholar 

  40. Brito A, Borges ME, Garín M, Hernández A (2009) Energy Fuels 23:2952

    Article  CAS  Google Scholar 

  41. Cantrell DG, Gillie LJ, Lee AF, Wilson K (2005) Appl Catal A 287:183

    Article  CAS  Google Scholar 

  42. Ferreira SLC, Santos WNL, Quintella CM, Neto BB, Bosque-Sendra JM (2004) Talanta 63:1061

    Article  CAS  Google Scholar 

  43. Valderrama MJ (1989) Métodos matemáticos aplicados a las ciencias experimentales. Pirámide, Madrid

    Google Scholar 

  44. Gomes JFP, Puna JFB, Gonçalves LM, Bordado JCM (2011) Energy 36(12):6770

    Article  CAS  Google Scholar 

  45. Van Gerpen J (2005) Fuel Process Technol 86:1097

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Vera Regina Leopoldo Constantino from the Instituto de Química, Universidade de São Paulo, for the TG–DSC–MS analysis. They are indebted to the Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG (Process: APQ 00341-08) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta G. Prado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado, R.G., de Almeida, G.D., de O. Carvalho, M.M. et al. Multivariate Method for Transesterification Reaction of Soybean Oil Using Calcined Mg–Al Layered Double Hydroxide as Catalyst. Catal Lett 144, 1062–1073 (2014). https://doi.org/10.1007/s10562-014-1252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1252-2

Keywords

Navigation