Skip to main content
Log in

Effect of Pd Particle Size on the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Pd Core–Porous SiO2 Shell Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic activity of Pd core–porous SiO2 shell catalysts (Pd@SiO2) with different Pd particle size was evaluated for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. In the synthesis of palladium nanoparticles, the Pd particle size increased with the decrease of the ratio of polyvinylpyrrolidone (PVP) to Pd. Among the prepared Pd@SiO2 catalysts, Pd@SiO2_PVP2 (Pd loading = 1.02 wt%; PVP to Pd precursor molar ratio = 2) had the largest Pd particle size (4.2 nm) and showed the highest hydrogen peroxide production rate (330 mmol H2O2/gPd·h). The production rate of hydrogen peroxide decreased along with the decrease in Pd particle size. As the Pd nanoparticles became smaller, energetic sites (defects, edges, and corners) where the O–O bond is dissociated and the formation of water is promoted were more exposed on the surface. Thus, fewer energetic sites on the Pd surface are favored for synthesizing hydrogen peroxide, which was the major reason for Pd@SiO2_PVP2 being the most active among the prepared Pd@SiO2 catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Angew Chem Int Ed Engl 45(42):6962–6984

    Article  CAS  Google Scholar 

  2. Zhang J, Tang Y, Li G, Hu C (2005) Appl Catal A 278:251–261

    Article  CAS  Google Scholar 

  3. Laufer W, Meiers R, Holderich W (1999) J Mol Catal A 141:215–221

    Article  CAS  Google Scholar 

  4. Mizuno N (2009) Modern heterogeneous oxidation catalysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  5. Samanta C (2008) Appl Catal A 350:133–149

    Article  CAS  Google Scholar 

  6. Choudhary VR, Gaikwad AG (2003) React Kinet Catal Lett 80:27–32

    Article  CAS  Google Scholar 

  7. Ntainjua NE, Piccinini M, Pritchard JC, Edwards JK, Carley AF, Moulijn JA, Hutchings GJ (2009) ChemSusChem 2:575–580

    Article  Google Scholar 

  8. Park S, Seo JG, Jung JC, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK (2009) Catal Commun 10:1762

    Article  CAS  Google Scholar 

  9. Park S, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK (2010) J Mol Catal A 319:98–107

    Article  CAS  Google Scholar 

  10. Edwards JK, Solsona B, Ntainjua E, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Science 323:1037–1041

    Article  CAS  Google Scholar 

  11. Liu Q, Bauer JC, Schaak RE, Lunsford JH (2008) Appl Catal A 339:130–136

    Article  CAS  Google Scholar 

  12. Ghedini E, Menegazzo F, Signoretto M, Mansoli M, Pinna F, Strukul G (2010) J Catal 273:266–273

    Article  CAS  Google Scholar 

  13. Zhou B, Lee L-K, US Patent 6,168, 775

  14. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Angew Chem Int Ed Engl 48:60–103

    Article  CAS  Google Scholar 

  15. Lim B, Jiang M, Tao J, Camargo PHC, Zhu Y, Xia Y (2009) Adv Funct Mater 19:189–200

    Article  CAS  Google Scholar 

  16. Jin M, Liu H, Zhang H, Xie Z, Liu J, Xia Y (2011) Nano Res 4:83–91

    Article  CAS  Google Scholar 

  17. Lee H, Kim C, Yang S, Han JW, Kim J (2012) Catal Surv Asia 16:14

    Article  CAS  Google Scholar 

  18. Miyake M, Miyabayashi K (2012) Catal Surv Asia 16:1–13

    Article  CAS  Google Scholar 

  19. Lee H, Kim S, Lee D-W, Lee K-Y (2011) Catal Commun 12:968

  20. Teranishi T, Miyake M (1998) Chem Mater 10:594–600

    Article  CAS  Google Scholar 

  21. Yan X, Liu H, Liew Y (2001) J Mater Chem 11:3387–3391

    Article  CAS  Google Scholar 

  22. Piccinini M, Ntainjua E, Edwards JK, Carley AF, Mouljin JA, Hutchings GJ (2010) Phys Chem Chem Phys 12:2488–2492

    Article  CAS  Google Scholar 

  23. Matsushima T (1989) Surf Sci 217:155

    Article  CAS  Google Scholar 

  24. Rar A, Matsushima T (1994) Surf Sci 318:89–96

    Article  CAS  Google Scholar 

  25. Deguchi T, Iwamoto M (2013) J Phys Chem C 117:18540

    Google Scholar 

  26. Menegazzo F, Signoretto M, Frison G, Pinna F, Strukul G, Manzoli M, Boccuzzi F (2012) J Catal 290:143–150

    Article  CAS  Google Scholar 

  27. Hardeveld RV, Hartog F (1969) Surf Sci 15:189–230

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Human Resources Development program (No. 20114010203050) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry and Energy. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Science, ICT & Future Planning)” (2013, University-Institute Cooperation Program). Dr. Dae-Won Lee was supported by a Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae-Won Lee or Kwan-Young Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Lee, DW., Lee, KY. et al. Effect of Pd Particle Size on the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Pd Core–Porous SiO2 Shell Catalysts. Catal Lett 144, 905–911 (2014). https://doi.org/10.1007/s10562-014-1235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1235-3

Keywords

Navigation