Skip to main content
Log in

Shape and Size Controlled Pt Nanocrystals as Novel Model Catalysts

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A tremendous development of nanotechnology enabled us to prepare precisely structure-controlled nanocrystals (NCs). Recently, such structure controlled NCs have been applied as model catalysts with controlled active sites to evaluate reaction mechanisms. Here, we review our recent works on preparation of shape controlled Pt NCs, such as cube and wire, and on application as model catalysts for olefin hydrogenation to assess active Pt sites. A hydrogen reduction method of Pt(II) ion was adopted in an aqueous phase to prepare Pt cube in the presence of shape forming agent (NaI) and organic protective agent (sodium polyacrylate or sodium succinate). We succeed to prepare Pt cube with high size and shape selectivity, followed by very small Pt cube of less than 3 nm. Such simultaneous control of both size and shape of Pt NCs has been successfully achieved by the sophisticated tuning of multiple conditions for the growth kinetics of Pt nuclei during hydrogen reduction of PtCl4 2− in aq. N-, N-dimethylformamide (DMF) solution. The key strategy is to produce small Pt nuclei and to avoid the excessive growth of Pt nuclei, in conjunction with face selective adsorption of anionic protective and shape-forming agents by the control of solvent system. For the preparation of Pt nanowires with high anisotropy, template-assisted methods have been usually used. We have developed facile liquid phase preparation method at room temperature in air without any template. The key factors of the method are: firstly, to use aqueous organic solvent system to control solvent polarity; secondly, to use co-solvent DMF as shape forming agent; thirdly, to use excess NaBH4 as a stabilizer of Pt nuclei to prevent formation of conventional particles. Single-crystalline Pt nanowires of 2 nm diameter and more than micron length were easily obtained by the reduction of Pt(IV) with excess NaBH4 in water–DMF–toluene solution (1:8:5 volume ratio) in a short reaction period of 3 h. Then, we have applied shape-controlled Pt NCs protected with PAA prepared by our original methods, such as cube, tetrahedron and wire, as model catalysts for olefin (cis- and trans-stilbenes) hydrogenation in ethanol to evaluate the active facet of Pt catalysts; e.g., Pt(111) or Pt(100). The estimated TOF values for the hydrogenation of cis- and trans-stilbene decreased in the order: cube > cuboctahedron > tetrahedron ~ nanowire. This tendency indicates that Pt(100) show high activity compared with Pt(111). The result is compatible with measurement of XPS and Raman spectra, suggesting strong adsorption of reactant on Pt(100). Hydrogenation of olefins (1-hexene and cyclohexene) has been carried out over Pt cubes with different sizes (8.2–10.1 nm) as catalysts to get information about active sites of Pt catalysts, e.g., flat facet or edge/corner atoms. The results of similar TOF values among Pt cubes with different sizes imply that the active sites are flat facets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Angew Chem Int Ed 48:60

    Article  CAS  Google Scholar 

  2. Chen J, Lim B, Lee EP, Xia Y (2009) Nano Today 4:81

    Article  Google Scholar 

  3. Peng Z, Yang H (2009) Nano Today 4:143

    Article  CAS  Google Scholar 

  4. Guo S, Wang E (2011) Nano Today 6:240

    Article  CAS  Google Scholar 

  5. Jeong S, Woo K, Kim D, Lim S, Kim JS, Shin H, Xia Y, Moon J (2008) Adv Funct Mater 18:679

    Article  CAS  Google Scholar 

  6. Eychmuller A (2001) J Phys Chem B 104:6514

    Article  Google Scholar 

  7. Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y (2007) Adv Mater 19:3177

    Article  CAS  Google Scholar 

  8. Grass ME, Somorjai GA (2009) Catal Lett 128:1

    Article  CAS  Google Scholar 

  9. Narayanan R, El-Sayed MA (2005) J Phys Chem B 109:12663

    Article  CAS  Google Scholar 

  10. Bratlie KM, Lee H, Komvopoulos K, Yang PD, Somorjai GA (2007) Nano Lett 7:3097

    Article  CAS  Google Scholar 

  11. Schulz J, Roucoux A, Patin H (2002) Chem Rev 102:3757

    Article  Google Scholar 

  12. Wang C, Daimon H, Onodera T, Koda T, Sun S (2008) Angew Chem Int Ed 47:3588

    Article  CAS  Google Scholar 

  13. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924

    Article  CAS  Google Scholar 

  14. Tsung CK, Kuhn JN, Huang W, Aliaga C, Hung LI, Somorjai GA, Yang P (2009) J Am Chem Soc 131:5816

    Article  CAS  Google Scholar 

  15. Herricks T, Chen J, Xia Y (2004) Nano Lett 4:2367

    Article  CAS  Google Scholar 

  16. Lim S, Ojea-Jimenz I, Varon M, Casals E, Arbiol J, Puntes V (2010) Nano Lett 10:964

    Article  CAS  Google Scholar 

  17. Song H, Kim F, Connor S, Somorjai GA, Yang P (2005) J Phy Chem B 109:188

    Article  CAS  Google Scholar 

  18. Zhang Y, Grass ME, Kuhn JN, Tao F, Habas SE, Huang W, Yang P, Somorjai GA (2008) J Am Chem Soc 130:5868

    Article  CAS  Google Scholar 

  19. Yamada M, Kon S, Miyake M (2005) Chem Lett 34:1050

    Article  CAS  Google Scholar 

  20. Markovic NM, Ross PN Jr (2002) Surf Sci 45:117

    Article  CAS  Google Scholar 

  21. Petroski JM, Green TC, El-Sayed MA (2001) J Phys Chem A 105:5542

    Article  CAS  Google Scholar 

  22. Demortiere A, Launois P, Goubet N, Albouly PA, Petit C (2008) J Phys Chem B 112:14583

    Article  CAS  Google Scholar 

  23. Miyabayashi K, Nakamura S, Miyake M (2011) Cryst Growth Des 11:4292

    Article  CAS  Google Scholar 

  24. Grunthan F, Elleman TS, Martin DS Jr (1955) J Am Chem Soc 77:2965

    Article  Google Scholar 

  25. Inzelt G (2006) In: Sholz F, Pickett CJ (ed) Standard formal and other characteristic potentials of selected electrode reaction. Encyclopedia of electrochemistry inorganic electrochemistry, vol 7a. Wiley, Weinheim, pp 17–75

  26. Fu X, Wang Y, Wu N, Gui L, Tang Y (2002) Langmuir 18:4619

    Article  CAS  Google Scholar 

  27. Fu X, Wang Y, Wu N, Gui L, Tang Y (2003) J Mater Chem 13:1192

    Article  CAS  Google Scholar 

  28. Kijima T, Yoshimura T, Uota M, Ikeda T, Fujikawa D, Mouri S, Uoyama S (2004) Angew Chem Int Ed 43:228

    Article  CAS  Google Scholar 

  29. Sakamoto Y, Fukuoka A, Higuchi T, Shimomura N, Inagaki S, Ichikawa M (2004) J Phys Chem B 108:853

    Article  CAS  Google Scholar 

  30. Fukuoka A, Higuchi T, Ohtake T, Oshio T, Kimura J, Sakamoto Y, Shimomura N, Inagaki S, Ichikawa M (2006) Chem Mater 18:337

    Article  CAS  Google Scholar 

  31. Chen J, Herricks T, Geissler M, Xia Y (2004) J Am Chem Soc 126:10854

    Article  CAS  Google Scholar 

  32. Gole A, Murphy CJ (2004) Chem Mater 16:3633

    Article  CAS  Google Scholar 

  33. Petroski JM, Wang ZL, Green TC, El-Sayed MA (1998) J Phys Chem B 102:3316

    Article  CAS  Google Scholar 

  34. Yamada M, Shen Z, Miyake M (2006) Chem Commun 2569

  35. Teranishi T, Haga M, Shiozawa Y, Miyake M (2000) J Am Chem Soc 122:4237

    Article  CAS  Google Scholar 

  36. Yang J, Lee JY, Deivaraj TC, Too HP (2003) Langmuir 19:10361

    Article  CAS  Google Scholar 

  37. Shen Z, Yamada M, Miyake M (2007) Chem Commun 245

  38. Liu Z, Hu Z, Liang J, Li S, Yang Y, Peng S, Qian Y (2004) Langmuir 20:214

    Article  CAS  Google Scholar 

  39. Gottlieb HE, Kotlyar V, Nudelman A (1997) J Org Chem 62:7512

    Article  CAS  Google Scholar 

  40. Narayanan R, El-Sayed MA (2008) Top Catal 47:15

    Article  CAS  Google Scholar 

  41. Kweskin SJ, Rioux RM, Habas SE, Komvopoulos K, Yang P, Somorjai GA (2006) J Phys Chem B 110:15920

    Article  CAS  Google Scholar 

  42. Sánchez-Sánchez CM, Solla-Gullón J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E (2010) J Am Chem Soc 132:5622

    Article  Google Scholar 

  43. Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P (2006) Angew Chem Int Ed 45:7824

    Article  CAS  Google Scholar 

  44. Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M (2006) Angew Chem Int Ed 45:7063

    Article  CAS  Google Scholar 

  45. Narayanan R, El-Sayed MA (2004) J Am Chem Soc 126:7194

    Article  CAS  Google Scholar 

  46. Narayanan R, El-Sayed MA (2005) Langmuir 21:2027

    Article  CAS  Google Scholar 

  47. Rioux RM, Song H, Grass M, Habas S, Niesz K, Hoefelmeyer JD, Yang P, Somorjai GA (2006) Top Catal 39:167

    Article  CAS  Google Scholar 

  48. Bratlie KM, Flores LD, Somorjai GA (2005) Surf Sci 599:93

    Article  CAS  Google Scholar 

  49. Cao M, Miyabayashi K, Shen Z, Ebitani K, Miyake M (2011) J Nanopart Res 13:5147

    Article  CAS  Google Scholar 

  50. Grass ME, Yue Y, Habas SE, Rioux RM, Teall CI, Yang P, Somorjai GA (2008) J Phys Chem C 112:4797

    Article  CAS  Google Scholar 

  51. Watanabe H, Okamoto Y, Furuya K, Sakamoto A, Tasumi M (2002) J Phys Chem A 106:3318

    Article  CAS  Google Scholar 

  52. Mittendorfer F, Thomazeau C, Raybaud P, Toulhoat H (2003) J Phys Chem B 107:12287

    Article  CAS  Google Scholar 

  53. Ge Q, King DA (1999) J Chem Phys 110:4699

    Article  CAS  Google Scholar 

  54. Louette P, Bodino F, Pireaux JJ (2005) Surf Sci Spectra 12:22

    Article  CAS  Google Scholar 

  55. Bürgi T, Atamny F, Schlögl R, Baiker A (2000) J Phys Chem B 104:5953

    Article  Google Scholar 

  56. Peng ZM, You HJ, Yang H (2010) ACS Nano 4:1501

    Article  CAS  Google Scholar 

  57. Narayanan R, Tabor C, El-Sayed MA (2008) Top Catal 48:60

    Article  CAS  Google Scholar 

  58. Somorjai GA, Park JY (2008) Top Catal 49:126

    Article  CAS  Google Scholar 

Download references

Acknowledgement

A part of this work was supported by the program for Development of PEFC Technologies Aiming for Practical Application/Base Technology/Analysis of Morphology, Electrochemical Reaction and Mass Transfer for MEA Materials (No. 10000806-0) from NEDO, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Miyake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyake, M., Miyabayashi, K. Shape and Size Controlled Pt Nanocrystals as Novel Model Catalysts. Catal Surv Asia 16, 1–13 (2012). https://doi.org/10.1007/s10563-011-9128-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-011-9128-6

Keywords

Navigation