Skip to main content
Log in

Supported K/MoS2 and K/Mo2C Catalysts for Higher Alcohol Synthesis from Synthesis Gas: Impact of Molybdenum Precursor and Metal Oxide Support on Activity and Selectivity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Potassium promoted molybdenum sulfide catalysts are well-known for the conversion of synthesis gas (H2 and CO) to higher alcohols, primarily ethanol and propanol. Basic supports composed of mixed MgAl based oxides from decomposed hydrotalcites are known to yield enhanced higher alcohol selectivities compared to bulk or carbon supported molybdenum sulfide catalysts. In this study, the role of the metal oxide support and the active as well as precursor molybdenum phases on higher alcohol productivity and selectivity are probed. At fixed loadings of potassium (3 wt%) and molybdenum (5 wt%), supported molybdenum sulfide (MoS2) and molybdenum carbide (Mo2C) catalysts are prepared on mixed MgAl oxide, α-alumina, and magnesium oxide supports and evaluated in higher alcohol synthesis. At low conversions, the catalytic results suggest that basic supports provide similar effects as the alkali promoter, helping to produce lower methanol (MeOH) selectivities and higher C2+OH selectivities while shifting overall selectivity from hydrocarbons towards alcohols. Under similar conditions, it is also shown that Mo2C compositions produce more hydrocarbons than MoS2 catalysts, suggesting that higher potassium loadings are needed to fully eliminate acidity in molybdenum carbide phases. Conversion of the Mo2C phase to a MoS2 phase in situ, followed by catalytic testing in syngas hydrogenation shows that similar catalytic selectivities are obtained at similar CO conversions for catalysts with similar overall molybdenum and potassium loadings, regardless of the molybdenum phase in the precatalyst (MoO3 vs. Mo2C). The highest C2+ alcohol selectivities and productivities among the catalysts tested here are obtained on presulfided MoO3 catalysts on both α-alumina and magnesium oxide supports.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta M, Smith ML, Spivey JJ (2011) ACS Catal 1:641–656

    Article  CAS  Google Scholar 

  2. Spivey JJ, Egbedi A (2007) Chem Soc Rev 36:1514–1528

    Article  CAS  Google Scholar 

  3. Subramani V, Gangwal SG (2008) Energy Fuels 22:814–839

    Article  CAS  Google Scholar 

  4. Surisetty VR, Dalai AK, Kozinski J (2011) Appl Catal A 404:1–11

    CAS  Google Scholar 

  5. Villa O, Campisi S, Giordano C, Otte K, Pratt L (2012) ACS Catal 2:1377–1380

    Article  CAS  Google Scholar 

  6. Patt J, Moon DJ, Phillips C, Thompson L (2000) Catal Lett 65:193–195

    Article  CAS  Google Scholar 

  7. Gutiérrez OY, Kaufmann C, Lercher JA (2011) ACS Catal 1:1595–1603

    Article  Google Scholar 

  8. Lee JS, Locatelli S, Oyama ST, Boudart M (1990) J Catal 125:157–170

    Article  CAS  Google Scholar 

  9. Tatsumi T, Muramatsu A, Fukunaga T, Tominaga H (1986) Polyhedron 5:257–260

    Article  CAS  Google Scholar 

  10. Surisetty VR, Tavasoli A, Dalai AK (2009) Appl Catal A 365:243–251

    Article  CAS  Google Scholar 

  11. Bian G-Z, Fu Y-L, Yamada M (1996) Appl Catal A 144:79–91

    Article  CAS  Google Scholar 

  12. Surisetty VR, Dalai AK, Kozinski J (2010) Appl Catal A 385:153–162

    Article  CAS  Google Scholar 

  13. Bian G-Z, Fan L, Fu Y-L, Fujimoto K (1998) Ind Eng Chem Res 37:1736–1743

    Article  CAS  Google Scholar 

  14. Murchison CB, Conway MM, Stevens RR, Quarderer GJ (1988) Calgary 2:626–633

    CAS  Google Scholar 

  15. Christensen JM, Jensen PA, Jensen AD (2011) Ind Eng Chem Res 50:7949–7963

    Article  CAS  Google Scholar 

  16. Youchang X, Naasz BM, Somorjai GA (1986) Appl Catal 27:233–241

    Article  Google Scholar 

  17. Fang K, Li D, Lin M, Xiang M, Wei W, Sun Y (2009) Catal Today 147:133–138

    Article  CAS  Google Scholar 

  18. Shou H, Ferrari D, Barton DG, Jones CW, Davis RJ (2012) ACS Catal 2:1408–1416

    Article  CAS  Google Scholar 

  19. Zaman SF, Smith KJ (2010) Appl Catal A 378:59–68

    Article  CAS  Google Scholar 

  20. Bian G-Z, Fan L, Fu Y-L, Fujimoto K (1998) Appl Catal A 170:255–268

    Article  CAS  Google Scholar 

  21. Muramatsu A, Takashi T, Tominaga HB (1987) Chem Soc JPN 60:3157–3161

    Article  CAS  Google Scholar 

  22. Santos VP, van der Linden B, Chojecki A, Budroni G, Corthals S, Shibata H, Meima GR, Kapteijn F, Makkee M, Gascon J (2013) ACS Catal 3:1634–1637

    Article  CAS  Google Scholar 

  23. Morrill MR, Thao NT, Agrawal PK, Jones CW, Davis RJ, Shou H, Barton DG, Ferrari D (2012) Catal Lett 142:875–881

    Article  CAS  Google Scholar 

  24. Morrill MR, Thao NT, Jones CW, Agrawal PK, Ferrari D, Barton DG, Davis RJ, Shou H (2013) ACS Catal 3:1665–1675

    Article  CAS  Google Scholar 

  25. Shou H, Davis RJ (2011) J Catal 282:83–93

    Article  CAS  Google Scholar 

  26. Lei X, Zhang F, Yang L, Guo X, Yuanyuan T, Fu S, Li F, Evans DG, Duan X (2007) AIChE J 54:932–940

    Article  Google Scholar 

  27. Takehira K (2004) Catal Commun 5:209–213

    Article  CAS  Google Scholar 

  28. Meloni D, Monaci R, Solinas V, Auroux A, Dumitriu E (2008) Appl Catal A 350:86–95

    Article  CAS  Google Scholar 

  29. Perez-Ramirez J, Abello S, van der Pers NM (2007) Chem Eur J 13:870–878

    Article  CAS  Google Scholar 

  30. Prinetto F, Ghiotti G, Graffin P, Tichit D (2000) Microporous Mesoporous Mater 39:229–247

    Article  CAS  Google Scholar 

  31. Stevens RR (1988) Process for producing alcohols from synthesis gas. U.S. Patent 4752622

  32. Santiesteban JG, Bogdan CE, Herman RG, Klier K (1988) Calgary 2:561–568

    CAS  Google Scholar 

  33. Li X, Feng L, Lui Z, Zhong B, Dadyburjor DB, Kugler EL (1998) Ind Eng Chem Res 37:3853–3863

    Article  CAS  Google Scholar 

  34. Christensen JM, Jensen PA, Schiødt NC, Jensen AD (2010) ChemCatChem 2:523–526

    Article  CAS  Google Scholar 

  35. Pratt EF, Kubler DG (1953) J Am Chem Soc 76:52–56

    Article  Google Scholar 

  36. Veibel S, Nielsen JI (1967) Tetrahedron 23:1723–1733

    Article  CAS  Google Scholar 

  37. Kozlowski JT, Davis RJ (2013) ACS Catal 3:1588–1600

    Article  CAS  Google Scholar 

  38. Ueda W, Kuwabara T, Ohshida T, Morikawa Y J (1990) Chem Soc Chem Commun 1558–1559

  39. Carlini C, Marchionna M, Noviello M, Galletti AMR, Sbrana G, Basile F, Vaccari AJ (2005) Mol Catal A 232:13–20

    Article  CAS  Google Scholar 

  40. Carlini C, Flego C, Marchionna M, Noviello M, Galletti AMR, Sbrana G, Basile F, Vaccari AJ (2004) Mol Catal A 220:215–220

    Article  CAS  Google Scholar 

  41. Carlini C, Di Girolamo M, Macinai A, Marchionna M, Noviello M, Galletti AMR, Sbrana GJ (2003) Mol Catal A 200:137–146

    Article  CAS  Google Scholar 

  42. Tatsumi T, Muramatsu A, Tominaga H (1986) Appl Catal 27:69–82

    Article  CAS  Google Scholar 

  43. Surisetty VR, Dalai AK, Kozinski J (2011) Appl Catal A 393:50–58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Jones.

Additional information

Hiroko Okatsu and Michael R. Morrill shared first authorship on this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1004 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okatsu, H., Morrill, M.R., Shou, H. et al. Supported K/MoS2 and K/Mo2C Catalysts for Higher Alcohol Synthesis from Synthesis Gas: Impact of Molybdenum Precursor and Metal Oxide Support on Activity and Selectivity. Catal Lett 144, 825–830 (2014). https://doi.org/10.1007/s10562-014-1216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1216-6

Keywords

Navigation