Skip to main content
Log in

Fischer–Tropsch Synthesis: Using Deuterium as a Tool to Investigate Primary Product Distribution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Accumulation of products is a known phenomenon associated with a continuously stirred tank reactor (CSTR). Secondary reactions of α-olefins due to prolonged bed/pore residence time can significantly change the primary Fischer–Tropsch product distribution. Using D2 as a tracer, this study first investigated the significance of Fischer–Tropsch product accumulation in a CSTR. Secondly, the D2 tracer study was used to investigate primary product distribution and olefin to paraffin ratios. Based on the D2 study, it was found that Fischer–Tropsch synthesis with a 2.5 % Ru/NaY catalyst follows a single α mechanism with a chain growth probability of about 0.74. Both olefins and paraffins are primary products and the ruthenium catalyst produced a similar olefin/paraffin ratio for each carbon number. The apparent decline of the O/P ratio for higher carbon number products was shown to be due to secondary reactions of the olefin at prolonged residence times. D2 tracing was shown to be a versatile tool to investigate product accumulation and to define primary product distribution which is very important for mechanistic interpretation and kinetic modeling.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson RB, Friedel RA, Storch HH (1951) J Chem Phys 19:313

    Article  CAS  Google Scholar 

  2. Schulz GV (1935) Z Physik Chem B30:379

    CAS  Google Scholar 

  3. Flory PJ (1936) J Am Chem Soc 58:1877

    Article  CAS  Google Scholar 

  4. Davis BH (1992) Prep Pap Am Chem Soc, Div Fuel Chem 37:172

    CAS  Google Scholar 

  5. Schliebs B, Gaube J (1985) Berichte der Bunsen-Gesellschaft 89:68

    Article  CAS  Google Scholar 

  6. Patzlaff J, Liu Y, Graffmann C, Gaube J (1999) Appl Catal A 186:109

    Article  CAS  Google Scholar 

  7. Huff GA Jr, Satterfield CN (1984) J Catal 85:370

    Article  CAS  Google Scholar 

  8. Dictor RA, Bell AT (1986) J Catal 97:121

    Article  CAS  Google Scholar 

  9. Madon RJ, Taylor WF (1981) J Catal 69:32

    Article  CAS  Google Scholar 

  10. Donnelly TJ, Yates IC, Satterfield CN (1988) Energy Fuels 2:734

    Article  CAS  Google Scholar 

  11. Dictor RA, Bell AT (1983) Ind Eng Chem Proc Des Dev 22:678

    Article  CAS  Google Scholar 

  12. Satterfield CN, Huff GA, Longwell JP (1982) Ind Eng Chem Process Des Dev 21:465

    Article  CAS  Google Scholar 

  13. Shi B, Davis BH (2004) Appl Catal A 277:61

    Article  CAS  Google Scholar 

  14. Henrici-Olivé G, Olivé S (1976) Angewandte Chemie Int Ed Eng 15:136–141

    Article  Google Scholar 

  15. Satterfield CN, Huff GA Jr (1982) J Catal 73:187

    Article  CAS  Google Scholar 

  16. Tau LM, Dabbagh H, Bao S, Davis BH (1990) Catal Lett 7:127

    Article  CAS  Google Scholar 

  17. Egiebor NO, Cooper WC (1985) Appl Catal 14:323

    Article  CAS  Google Scholar 

  18. Iglesia E, Reyes SC, Madon RJ (1991) J Catal 129:238

    Article  CAS  Google Scholar 

  19. Madon RJ, Iglesia E (1993) J Catal 139:576

    Article  CAS  Google Scholar 

  20. Madon RJ, Reyes SC, Iglesia E (1991) J Phys Chem 95:7795

    Article  CAS  Google Scholar 

  21. Kuipers EW, Scheper C, Wilson JH, Vinkenburg IH, Oosterbeek H (1996) J Catal 158:288

    Article  CAS  Google Scholar 

  22. Kuipers EW, Vinkenburg IH, Oosterbeek H (1995) J Catal 152:137

    Article  CAS  Google Scholar 

  23. Komaya T, Bell AT (1994) J Catal 146:237

    Article  CAS  Google Scholar 

  24. Zhan X, Davis BH (2000) Pet Sci Technol 18:1037

    Article  CAS  Google Scholar 

  25. Raje AP, Davis BH (1996) Energy Fuels 10:552

    Article  CAS  Google Scholar 

  26. Kruit KD, Vervloet D, Kapteijn F, van Ommen JR (2013) Catal Sci Technol 3:2210

    Article  CAS  Google Scholar 

  27. Weitkamp AW, Seelig HS, Bowman NJ, Cady WE (1953) J Ind Eng Chem 45:343

    Article  CAS  Google Scholar 

  28. Botes FG (2007) Energy Fuels 21:1379

    Article  CAS  Google Scholar 

  29. Todic B, Bhatelia T, Froment GF, Ma W, Jacobs G, Davis BH, Bukur DB (2013) Ind Eng Chem Res 52:669

    Article  CAS  Google Scholar 

  30. Liu Y, Zheng S, Shi B, Li J (2007) J Mol Catal A 276:110

    Article  CAS  Google Scholar 

  31. Masuku CM, Shafer WD, Ma W, Gnanamani MK, Jacobs G, Hildebrandt D, Glasser D, Davis BH (2012) J Catal 287:93

    Article  CAS  Google Scholar 

  32. Shi B, O’Brien RJ, Bao S, Davis BH (2001) J Catal 199:202

    Article  CAS  Google Scholar 

  33. Schulz H, Nie Z, Ousmanov F (2002) Catal Today 71:351

    Article  CAS  Google Scholar 

  34. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237:405

    Article  CAS  Google Scholar 

  35. Iglesia E, Reyes SC, Madon RJ, Soled SL (1993) In: Eley HPDD, Paul BW (eds) Advances in catalysis. Academic Press, New York, pp 221–302

    Google Scholar 

  36. Tau LM, Dabbagh HA, Davis BH (1990) Energy Fuels 4:94

    Article  CAS  Google Scholar 

  37. Zimmerman W, Bukur D, Ledakowicz S (1992) Chem Eng Sci 47:2707

    Article  CAS  Google Scholar 

  38. van der Laan GP, Beenackers AACM (1999) Catal Rev 41:255

    Article  Google Scholar 

  39. Jacobs G, Chaudhari K, Sparks D, Zhang Y, Shi B, Spicer R, Das TK, Li J, Davis BH (2003) Fuel 82:1251

    Article  CAS  Google Scholar 

  40. Shi B, Davis BH (2003) Top Catal 26:157

    Article  CAS  Google Scholar 

  41. Tau LM, Dabbagh HA, Chawla B, Davis BH (1990) Catal Lett 7:141

    Article  CAS  Google Scholar 

  42. Madon RJ, Iglesia E, Reyes SC (1993) ACS Symp Series 517:383

    Article  CAS  Google Scholar 

  43. Shi B, Jacobs G, Sparks D, Davis BH (2005) Fuel 84:1093

    Article  CAS  Google Scholar 

  44. Schulz H, Claeys M (1999) Appl Catal A 186:71

    Article  CAS  Google Scholar 

  45. Shi B, Davis BH (2005) Catal Today 106:129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Shafer, W.D., Pendyala, V.R.R. et al. Fischer–Tropsch Synthesis: Using Deuterium as a Tool to Investigate Primary Product Distribution. Catal Lett 144, 524–530 (2014). https://doi.org/10.1007/s10562-013-1164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1164-6

Keywords

Navigation