Skip to main content
Log in

Effect of Annealing Temperature on Co–MoS2 Nanosheets for Hydrodesulfurization of Dibenzothiophene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of annealing temperature on the structure of unsupported Co-promoted MoS2 nanosheets, prepared by mechanical activation of MoO3, S and Co(NO3)2·6H2O followed by annealing in an Ar atmosphere, is reported. An increase in annealing temperature reduced the catalyst surface area but increased the MoS2 stack height. Annealing temperatures above 600 °C also produced segregated CoxSy phases. The dibenzothiophene hydrodesulphurization activity and the direct desulfurization (DDS) to hydrogenation product ratio of the Co–MoS2 catalysts was significantly higher than for MoS2. Moreover, the DDS product selectivity of the Co–MoS2 catalysts was enhanced with increased annealing temperature up to 600 °C. Above 600 °C, the loss in activity and selectivity was due to segregation of CoxSy species and significant sintering of the MoS2 crystallites. Similar effects of high temperature sintering on the activity of MoS2 were also observed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Del Bianco A, Panariti N, Di Carlo S, Elmouchnino J, Fixari B, LePerchec P (1993) Appl Catal A 1:1–16

    Article  Google Scholar 

  2. Rezaei H, Liu X, Jooyaa S, Smith KJ, Bricker M (2010) Catal Today 150:244–254

    Article  CAS  Google Scholar 

  3. Kabe T, Ishihara A, Qian W (1994) Hydrodesulfurization and Hydrodenitrogenation. Wiley VCH, New York

    Google Scholar 

  4. Whiffen V, Smith KJ (2010) Energy Fuels 24:4728–4737

    Article  CAS  Google Scholar 

  5. Roxlo CB, Daage M, Ruppert AF, Chianelli RR (1986) J Catal 100:176

    Article  CAS  Google Scholar 

  6. Massoth FE, Muralidhar G, Shabtai J (1984) J Catal 85:53

    Article  CAS  Google Scholar 

  7. Zmierczak W, Muralidhar G, Massoth FE (1982) J Catal 77:432

    Article  CAS  Google Scholar 

  8. Daage M, Chianelli RR (1994) J Catal 149:414

    Article  CAS  Google Scholar 

  9. Wang H, Prins R (2008) J Catal 258:153

    Article  CAS  Google Scholar 

  10. Wang H, Prins R (2009) J Catal 264:31

    Article  CAS  Google Scholar 

  11. Sun Y, Prins R (2009) J Catal 267:193

    Article  CAS  Google Scholar 

  12. Lauritsen JV, Nyberg M, Norskov JK, Clausen BS, Topsoe H, Laesgaard E, Besenbacher F (2004) J Catal 224:94

    Article  CAS  Google Scholar 

  13. Hensen EJM, Kooyman PJ, van der Meer Y, van der Kraan AM, de Beer VHJ, van Veen JAR, van Santen RA (2001) J Catal 199:224

    Article  CAS  Google Scholar 

  14. Topsoe H, Clausen BS, Topsoe N, Pederson E (1986) Ind Eng Chem Fundam 25:25

    Article  Google Scholar 

  15. Candia R, Sorensen O, Villadsen J, Topsoe N, Clausen BS, Topsoe H (1984) Bull Soc Chim Belg 90:763

    Google Scholar 

  16. Okamoto Y, Kato A, Usman, Sato K, Hiromitsu I, Kubota T (2005) J Catal 233:16

    Article  CAS  Google Scholar 

  17. Huirache-Acuna R, Albiter MA, Ornelas C, Paraguay-Delgado F, Martinez-Sanchez R, Alonso-Nunez G (2006) Appl Catal A 308:134

    Article  CAS  Google Scholar 

  18. Farag H, EI-Hendawy AA, Sakanishi K, Kishida M, Mochida I (2009) Appl Catal B 91:189

    Article  CAS  Google Scholar 

  19. Afanasiev P (2010) J Catal 269:269

    Article  CAS  Google Scholar 

  20. Yoosuk B, Kim JH, Song C, Ngamcharussrivichai C, Prasassarakich P (2008) Catal Today 130:14

    Article  CAS  Google Scholar 

  21. Genuit D, Afanasiev P, Vrinat M (2005) J Catal 235:302

    Article  CAS  Google Scholar 

  22. Yoosuk B, Song C, Kim JH, Ngamcharussrivichai C, Prasassarakich P (2010) Catal Today 149:52

    Article  CAS  Google Scholar 

  23. Yoosuk B, Tumnantong D, Prasassarakich P (2012) Fuel 91:246

    Article  CAS  Google Scholar 

  24. Mahajan D, Marshall CL, Castagnola N, Hanson JC (2004) Appl Catal A 258:83

    Article  CAS  Google Scholar 

  25. Cho A, Koh JH, Lee S, Moon SH (2010) Catal Today 149:47

    Article  CAS  Google Scholar 

  26. Lee S, Cho A, Koh JH, Oh SH, Moon SH (2011) Appl Catal B 101:220

    Article  CAS  Google Scholar 

  27. Okamoto Y, Ishihara S, Kawano M, Satoh M, Kubota T (2003) J Catal 217:12

    CAS  Google Scholar 

  28. Siadati MH, Alonso G, Torres B, Chianelli RR (2006) Appl Catal A 305:160

    Article  CAS  Google Scholar 

  29. Okamoto Y, Ochiai K, Kawano M, Kobayashi K, Kubota T (2002) Appl Catal A 226:115

    Article  CAS  Google Scholar 

  30. Okamoto Y, Hioka K, Arakawa K, Fujikawa T, Ebihara T, Kubota T (2009) J Catal 268:49

    Article  CAS  Google Scholar 

  31. Okamoto Y, Kato A, Usman, Rinaldi N, Fujikawa T, Koshika H, Hiromitsu I, Kubota T (2009) J Catal 265:216

    Article  CAS  Google Scholar 

  32. Wu Z, Wang D, Sun A (2010) J Cryst Growth 312:340

    Article  CAS  Google Scholar 

  33. Wu Z, Wang D, Wang Y, Sun A (2010) Adv Eng Mater 12:534

    Article  CAS  Google Scholar 

  34. Li XN, Li YD (2003) Chem Eur J 9:2726–2731

    Article  CAS  Google Scholar 

  35. Chianelli RR, Ruppert AF, Behal SK, Kear BH, Wold A, Kershaw R (1985) J Catal 92:56

    Article  CAS  Google Scholar 

  36. Eijsbouts S, van den Oetelaar LCA, van Puijenbroek RR (2005) J Catal 229:352

    Article  CAS  Google Scholar 

  37. Pol VG, Pol SV, Gedanken A (2008) Cryst Growth Des 8:1126

    Article  CAS  Google Scholar 

  38. Polyyakov M, Indris S, Schwamborn S, Mazheika A, Poisot M, Kienle L, Bensch W, Muhler M, Grunert W (2008) J Catal 260:236

    Article  Google Scholar 

  39. Iwata Y, Sato K, Yoneda T, Miki Y, Sygimoto Y, Nishijima A, Shimada H (1998) Catal Today 45:353

    Article  CAS  Google Scholar 

  40. Farag H, Sakanishi K, Kouzu M, Matsumura A, Sugimoto Y, Saito I (2003) J Mol Catal A 206:399

    Article  CAS  Google Scholar 

  41. Camacho-Bragado GA, Elechiguerra JL, Olivas A, Fuentes S, Galvan D, Yacaman MJ (2005) J Catal 234:182

    Article  CAS  Google Scholar 

  42. Tye CT, Smith KJ (2006) Catal Today 116:461

    Article  CAS  Google Scholar 

  43. Alvarez L, Berhault G, Alonso-Nunez G (2008) Catal Lett 125:35

    Article  CAS  Google Scholar 

  44. Zhou T, Yin H, Liu Y, Chai Y, Zhang J, Liu C (2010) Catal Lett 134:343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Science and Engineering Research Council (NSERC) of Canada is gratefully acknowledged. Wu Z. Z. acknowledges fellowship support from the China Scholarship Council and financial support from the National Natural Science Foundation of China (Grant No. 51302326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Whiffen, V.M.L., Zhu, W. et al. Effect of Annealing Temperature on Co–MoS2 Nanosheets for Hydrodesulfurization of Dibenzothiophene. Catal Lett 144, 261–267 (2014). https://doi.org/10.1007/s10562-013-1143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1143-y

Keywords

Navigation