Skip to main content
Log in

Effects of Support on Sulfur Tolerance and Regeneration of Pt Catalysts Measured by Ethylene Hydrogenation and EXAFS

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of support on sulfur tolerance and regenerability under reducing environments was investigated by rate measurements for ethylene hydrogenation, hydrogen chemisorption, and extended X-ray absorption fine structure (EXAFS). Catalysts, 1 % Pt/Al2O3 and 1 % Pt/P25 (TiO2), were tested after sulfidation in H2S/H2 at 250 °C followed by regeneration treatments in H2 at 250, 350 and 450 °C. Our combined results showed a 20–27 times decrease in the rate of ethylene hydrogenation on both sulfided catalysts, accompanied by a 4–6 times drop in the Pt surface area. Regenerations up to 450 °C were unable to remove all the sulfur, as evidenced by the presence of Pt–S bonds by EXAFS at about 2.25–2.33 Å, characteristic lengths for chemisorbed sulfur and bulk-type PtS. However, a partial recovery of the hydrogenation rate per mole of Pt was observed on sulfided Pt/Al2O3 after reduction at 450 °C, while the induction of strong metal support interactions (SMSI) at reduction temperature above 350 °C was observed on Pt/P25, regardless of the presence of sulfur. For Pt/P25, the reversal of the SMSI state together with sulfur removal by mild oxidation suggests that sequential reduction/oxidation treatments may be more effective in restoring the S-free state of TiO2-supported catalysts.

Graphical Abstract

Pt/Al2O3 and Pt/TiO2 (P25) sulfur tolerance and regenerability were evaluated after reduction treatments in H2. Both catalysts were equally poisoned by sulfur based on C2H4 hydrogenation. Reduction treatments up to 450 °C were not able to remove sulfur on either catalyst. Sulfur on Pt may inhibit the formation of the SMSI state on Pt/TiO2, especially below 350 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barbouth N, Salame M (1987) J Catal 104:240–245

    Article  CAS  Google Scholar 

  2. Vassilakis D, Barbouth N, Oudar J (1990) Catal Lett 5:321–330

    Article  CAS  Google Scholar 

  3. Marecot P, Mahoungou JR, Barbier J (1993) Appl Catal A 101:143–149

    Article  CAS  Google Scholar 

  4. Mathieu MV, Primet M (1984) Appl Catal 9:361–370

    Article  CAS  Google Scholar 

  5. Chang JR, Chang SL (1998) J Catal 176:42–51

    Article  CAS  Google Scholar 

  6. Yang H, Chen HL, Chen JW, Omotoso O, Ring Z (2006) J Catal 243:36–42

    Article  CAS  Google Scholar 

  7. Huang TC, Kang BC (1995) J Mol Catal A 103:163–174

    Article  CAS  Google Scholar 

  8. Takahashi N, Suda A, Hachisuka I, Sugiura M, Sobukawa H, Shinjoh H (2007) Appl Catal B 72:187–195

    Article  CAS  Google Scholar 

  9. Chen YX, Chen YU, Li WH, Sheng SS (1990) Appl Catal 63:107–115

    Article  CAS  Google Scholar 

  10. Matsumoto S, Ikeda Y, Suzuki H, Ogai M, Miyoshi N (2000) Appl Catal B 25:115–124

    Article  CAS  Google Scholar 

  11. Takeuchi M, Matsumoto S (2004) Top Catal 28:151–156

    Article  CAS  Google Scholar 

  12. Reyes P, Pecchi G, Morales M, Fierro JLG (1997) Appl Catal A 163:145–152

    Article  CAS  Google Scholar 

  13. Yamamoto K, Kikuchi R, Takeguchi T, Eguchi K (2006) J Catal 238:449–457

    Article  CAS  Google Scholar 

  14. S. Kitaguchi (2011) Catalyst for hydrogen production, its manufacturing method, and hydrogen production method, JP2011183346A

  15. M. Paulus, O. Helmer, A. Tissler (2008) Supported precious metal catalyst resistant to sulfur poisoning and its use for exhaust gas treatment, DE102007003531A1

  16. Melchor A, Garbowski E, Mathieu MV, Primet M (1985) React Kinet Catal Lett 29:371–377

    Article  CAS  Google Scholar 

  17. Pazmiño JH, Miller JT, Mulla SS, Delgass WN, Ribeiro FH (2011) J Catal 282:13–24

    Article  Google Scholar 

  18. Cairns JA, Baglin JEE, Clark GJ, Ziegler JF (1983) J Catal 83:301–314

    Article  CAS  Google Scholar 

  19. Huizinga T, Vis JC, Vantblik HFJ, Prins R (1983) Recl Trav Chim Pays-Bas 102:496–497

    CAS  Google Scholar 

  20. Sadeghi HR, Henrich VE (1984) Appl Surf Sci 19:330–340

    Article  CAS  Google Scholar 

  21. Sadeghi HR, Henrich VE (1984) J Catal 87:279–282

    Article  CAS  Google Scholar 

  22. Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170–175

    Article  CAS  Google Scholar 

  23. Anderson JBF, Burch R, Cairns JA (1986) Appl Catal 21:179–185

    Article  CAS  Google Scholar 

  24. Resasco DE, Haller GL (1983) Appl Catal 8:99–107

    Article  CAS  Google Scholar 

  25. Demmin RA, Ko CS, Gorte RJ (1985) J Phys Chem 89:1151–1154

    Article  CAS  Google Scholar 

  26. Anderson JBF, Burch R, Cairns JA (1986) Appl Catal 25:173–180

    Article  CAS  Google Scholar 

  27. Foger K (1982) J Catal 78:406–418

    Article  CAS  Google Scholar 

  28. Herrmann JM, Pichat P (1982) J Catal 78:425–435

    Article  CAS  Google Scholar 

  29. K. Kunimori, S. Matsui, T. Uchijima, Chem Lett (1985) 359–362

  30. Meriaudeau P, Ellestad OH, Dufaux M, Naccache C (1982) J Catal 75:243–250

    Article  CAS  Google Scholar 

  31. Apesteguia CR, Brema CE, Garetto TF, Borgna A, Parera JM (1984) J Catal 89:52–59

    Article  CAS  Google Scholar 

  32. Bonneviot L, Haller GL (1991) J Catal 130:359–373

    Article  CAS  Google Scholar 

  33. Briggs D, Dewing J (1973) J Catal 28:338–339

    Article  CAS  Google Scholar 

  34. Cortright RD, Goddard SA, Rekoske JE, Dumesic JA (1991) J Catal 127:342–353

    Article  CAS  Google Scholar 

  35. Dorling TA, Eastlake MJ, Moss RL (1969) J Catal 14:23–33

    Article  CAS  Google Scholar 

  36. Duca D, Botár L, Vidóczy T (1996) J Catal 162:260–267

    Article  CAS  Google Scholar 

  37. X.S. Paul S. Cremer, Y. R. Shen, and, Gabor A. Somorjai (1996) J. Am. Chem. Soc. 118 2942–2949

  38. Schlatter JC, Boudart M (1972) J Catal 24:482–492

    Article  CAS  Google Scholar 

  39. Sinfelt JH (1964) J Phys Chem 68:856–860

    Article  CAS  Google Scholar 

  40. Toshiaki Ohtani JK, Kondo JN, Hirose C, Domen K (1999) J Phys Chem B 103:4562–4565

    Article  Google Scholar 

  41. Zaera F, Somorjai GA (1984) J Amer Chem Soc 106:2288–2293

    Article  CAS  Google Scholar 

  42. J.E. Benson, M. Boudart, J. Catal. 4 (1965) 704-&

    Google Scholar 

  43. Berthier Y, Perderea M, Oudar J (1973) Surf Sci 36:225–241

    Article  CAS  Google Scholar 

  44. Heegemann W, Meister KH, Bechtold E, Hayek K (1975) Surf Sci 49:161–180

    Article  CAS  Google Scholar 

  45. Backman AL, Masel RI (1988) J Vac Sci Technol 6:1137–1139

    Article  Google Scholar 

  46. Rekoske JE, Cortright RD, Goddard SA, Sharma SB, Dumesic JA (1992) J Phys Chem 96:1880–1888

    Article  CAS  Google Scholar 

  47. Davis SM, Zaera F, Gordon BE, Somorjai GA (1985) J Catal 92:240–246

    Article  CAS  Google Scholar 

  48. Mohsin SB, Trenary M, Robota HJ (1988) J Phys Chem 92:5229–5233

    Article  CAS  Google Scholar 

  49. Jacob T, Goddard WA (2005) J Phys Chem B 109:297–311

    Article  CAS  Google Scholar 

  50. Doll R, Gerken CA, VanHove MA, Somorjai GA (1997) Surf Sci 374:151–161

    Article  CAS  Google Scholar 

  51. Chang JR, Chang SL (1998) J Catal 176:42–51

    Article  CAS  Google Scholar 

  52. Chang JR, Chang SL, Lin TB (1997) J Catal 169:338–346

    Article  CAS  Google Scholar 

  53. Gracia FJ, Guerrero S, Wolf EE, Miller JT, Kropf AJ (2005) J Catal 233:372–387

    Article  CAS  Google Scholar 

  54. Vaarkamp M, Miller JT, Modica FS, Lane GS, Koningsberger DC (1992) J Catal 138:675–685

    Article  CAS  Google Scholar 

  55. Martens JHA, Prins R, Zandbergen H, Koningsberger DC (1988) J Phys Chem 92:1903–1916

    Article  CAS  Google Scholar 

  56. Mériaudeau P, Ellestad OH, Dufaux M, Naccache C (1982) J Catal 75:243–250

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Drs. Stuart Soled, Michael Daage, Pallassana S. Vankataraman, Prasenjeet Ghosh and Yogesh V. Joshi for useful discussions and active participation in this work and ExxonMobil Research and Engineering Company for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Nicholas Delgass.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pazmiño, J.H., Bai, C., Miller, J.T. et al. Effects of Support on Sulfur Tolerance and Regeneration of Pt Catalysts Measured by Ethylene Hydrogenation and EXAFS. Catal Lett 143, 1098–1107 (2013). https://doi.org/10.1007/s10562-013-1135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1135-y

Keywords

Navigation