Skip to main content
Log in

Impact of the promoter on the performance of carbon-supported Pt-Bi and Pt-Sb catalysts for the oxidative coupling of 2-Methyl-1-naphthol

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Bi- or Sb-promoted Pt catalysts with various Pt/Promoter ratios were supported on activated carbon (AC) by electroless deposition. Samples were characterized by inductively coupled plasma-optical emission spectroscopy (ICP-OES), N2 physisorption, X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The highest compositional homogeneity was found for 1%Pt–5%Bi, while 5%Pt–1%Bi has the highest platinum exposure on the surface. Pt–Sb samples consist of Pt- and Sb-containing nanochains; isolated Pt particles are only observed on a sample high in Pt and low in Sb (5%Pt–1%Sb). The suitability of the catalysts for the oxidative coupling of 2-methyl-1-naphthol depends on the promoter (Pro) used, the Pt loading, the Pt/Pro ratio, the solvent and the temperature of the reaction. 5%Pt–1%Bi/AC has the highest activity in terms of catalytic cycles completed; at room temperature in MeNO2 the binaphthol (3,3’-dimethyl-1,1’-binaphthalenyl-4,4’-diol) is obtained with an isolated yield of 99%. The highest yield (89%) of the binaphthone (3,3’-dimethyl-1,1’-binaphthalenylidene-4,4’-dione) is observed over 1%Pt-5%Bi/AC in refluxing MeOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available since it is an ongoing study, but they are obtainable from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M (2002) Chem Rev 102:1359–1469

    Article  CAS  Google Scholar 

  2. Takeya T, Kondo H, Otsuka T, Doi H, Okamoto I, Kotani E (2005) Chem Pharm Bull 53:199–206

    Article  CAS  Google Scholar 

  3. Adeniyi AA, Ajibade PA (2018). Bioinorg Chem Appl. https://doi.org/10.1155/2018/5796287

    Article  PubMed  PubMed Central  Google Scholar 

  4. Otsuka T, Okamoto I, Kotani E, Takeya T (2004) Tetrahedron Lett 45:2643–2647

    Article  CAS  Google Scholar 

  5. Ogata T, Okamoto I, Kotani E, Takeya T (2004) Tetrahedron 60:3941–3948

    Article  CAS  Google Scholar 

  6. Takeya T, Doi H, Ogata T, Okamoto I, Kotani E (2004) Tetrahedron 60:9049–9060

    Article  CAS  Google Scholar 

  7. Ganapaty S, Thomas PS, Fotso S, Laatsch H (2004) Phytochemistry 65:1267–1271

    Article  Google Scholar 

  8. Jansen PCM (2005). In: Jansen PCM, Cardon D (eds) Plant Resources of Tropical Africa. Earthprint Limited, Wageningen, Netherlands

    Google Scholar 

  9. Ogata T, Okamoto I, Doi H, Kotani E, Takeya T (2003) Tetrahedron Lett 44:2041–2044

    Article  CAS  Google Scholar 

  10. Maphoru MV, Heveling J, Kesavan Pillai S (2017) Kinet Catal 58:441–447

    Article  CAS  Google Scholar 

  11. Maphoru MV, Kesavan Pillai S, Heveling J (2017) J Catal 348:47–58

    Article  CAS  Google Scholar 

  12. Maphoru MV, Heveling J, Kesavan Pillai S (2018) ChemistrySelect 3:6224–6231

    Article  CAS  Google Scholar 

  13. Besson M, Gallezot P (2000) Catal Today 57:127–141

    Article  CAS  Google Scholar 

  14. Haan JL, Stafford KM, Masel RI (2010) J Phys Chem C 114:11665–11672

    Article  CAS  Google Scholar 

  15. Roy K, Artiglia L, Xiao Y, Varma A, van Bokhoven JA (2019) ACS Catal 9:3694–3699

    Article  CAS  Google Scholar 

  16. Besson M, Lahmer F, Gallezot P, Fuertes P, Flèche G (1995) J Catal 152:116–121

    Article  CAS  Google Scholar 

  17. Mallat T, Bodnar Z, Hug P, Baiker A (1995) J Catal 153:131–143

    Article  CAS  Google Scholar 

  18. Anderson R, Griffin K, Johnston P, Alsters PL (2003) Adv Synth Catal 345:517–523

    Article  CAS  Google Scholar 

  19. Mallat T, Baiker A (2004) Chem Rev 104:3037–3058

    Article  CAS  Google Scholar 

  20. Yu X, Pickup PG (2011) J Power Sources 196:7951–7956

    Article  CAS  Google Scholar 

  21. Mallat T, Bodnar Z, Baiker A, Greis O, Strübig H, Reller A (1993) J Catal 142:237–253

    Article  CAS  Google Scholar 

  22. Inoue T, Asakura K, Li W, Oyama T, Iwasawa Y (1997) Appl Catal A 165:183–197

    Article  CAS  Google Scholar 

  23. Inoue T, Asakura K, Iwasawa Y (1997) J Catal 171:457–466

    Article  CAS  Google Scholar 

  24. Campbell CT, Campbell JM, Dalton PJ, Henn FC, Rodriguez JA, Seimanides SG (1989) J Phys Chem 93:806–814

    Article  CAS  Google Scholar 

  25. Maphoru MV, Heveling J, Pillai SK (2014) ChemPlusChem 79:99–106

    Article  CAS  Google Scholar 

  26. Maphoru MV, Heveling J, Kesavan Pillai S (2016) Eur J Org Chem 2016(2):331–337

    Article  CAS  Google Scholar 

  27. Geng J, Hou W-H, Lv Y-N, Zhu J-J, Chen H-Y (2005) Inorg Chem 44:8503–8509

    Article  CAS  Google Scholar 

  28. Wang C, Shao C, Liu Y, Zhang L (2008) Scr Mater 59:332–334

    Article  CAS  Google Scholar 

  29. Long B, Huang J, Wang X (2012) Prog Nat Sci Mater Int 22:644–653

    Article  Google Scholar 

  30. Lee JK, Jeon H, Uhm S, Lee J (2008) Electrochim Acta 53:6089–6092

    Article  CAS  Google Scholar 

  31. Yu X, Pickup PG (2010) Electrochim Acta 55:7354–7361

    Article  CAS  Google Scholar 

  32. Chin HS, Cheong KY, Razak KA (2010) J Mater Sci 45:5993–6008

    Article  CAS  Google Scholar 

  33. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.V. Maphoru gratefully acknowledges financial support by a bursary received from DAAD-NRF (Deutscher Akademischer Austauschdienst—National Research Foundation of South Africa). The authors are thankful for the assistance received from Ms. Louise Mostert for XPS analysis (National Metrology Institute of South Africa), and from Ms. Charity Maepa and Ms. Rirandzu Rikhotso for SEM and TEM analysis (Council for Scientific and Industrial Research, Pretoria).

Funding

M.V. Maphoru gratefully acknowledges financial support by a bursary received from DAAD-NRF (Deutscher Akademischer Austauschdienst—National Research Foundation of South Africa) and conference attendance fees received from Tshwane University of Technology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and the design of the study. Material preparation, data collection and data analyses were performed by MVM and supervised by JH and SKP. The first draft of the manuscript was written by MVM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mabuatsela V. Maphoru.

Ethics declarations

Conflict of interest

The Authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maphoru, M.V., Heveling, J. & Kesavan Pillai, S. Impact of the promoter on the performance of carbon-supported Pt-Bi and Pt-Sb catalysts for the oxidative coupling of 2-Methyl-1-naphthol. Reac Kinet Mech Cat 134, 95–107 (2021). https://doi.org/10.1007/s11144-021-02038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02038-0

Keywords

Navigation