Skip to main content
Log in

Palladium Supported on Functionalized Mesoporous Silica as an Efficient Catalyst for Suzuki–Miyaura Coupling Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mesoporous SBA-15 was modified with organic functional groups by co-condensation method. The functionalized mesoporous silica can be loaded with palladium and the resulting material used as a catalyst for the Suzuki–Miyaura coupling reactions. Highly dispersed and uniform palladium nanoparticles could be detected using transmission electron microscopy. The Pd-SBA-15 nanocomposite with controlled molar ratio of amino groups to palladium exhibits an excellent catalytic activity and low Pd leaching for the Suzuki–Miyaura coupling reaction. The catalyst can also be reused at least six recycles in air with only a minor loss of activity.

Graphical Abstract

Mesoporous SBA-15 was modified with organic functional groups by co-condensation method. The functionalized mesoporous silica can be loaded with palladium and the resulting material used as a catalyst for the Suzuki–Miyaura coupling reactions. Highly dispersed and uniform palladium nanoparticles could be detected using transmission electron microscopy. The Pd-SBA-15 nanocomposite with controlled molar ratio of amino groups to palladium exhibits an excellent catalytic activity and low Pd leaching for the Suzuki–Miyaura coupling reaction. The catalyst can also be reused at least six recycles in air with only a minor loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin R, Buchwald SL (2008) Acc Chem Res 41:1461

    Article  CAS  Google Scholar 

  2. Littke AF, Fu GC (2002) Angew Chem Int Ed 41:4176

    Article  CAS  Google Scholar 

  3. Yin LX, Liebscher J (2007) Chem Rev 107:133

    Article  CAS  Google Scholar 

  4. Zhang R, Ding W, Tu B, Zhao D (2007) Chem Mater 19:4379

    Article  CAS  Google Scholar 

  5. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Nat Mater 6:507

    Article  CAS  Google Scholar 

  6. Castillejos E, Debouttiere P-J, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P (2009) Angew Chem Int Ed 48:2529

    Article  CAS  Google Scholar 

  7. Serp P, Castillejos E (2010) ChemCatChem 2:41

    Article  CAS  Google Scholar 

  8. Wu CD, Hu A, Zhang L, Lin WB (2005) J Am Chem Soc 127:8940

    Article  CAS  Google Scholar 

  9. Mitsudome T, Nose K, Mori K, Mizugaki T, Ebitani K, Jitsukawa K, Kaneda K (2007) Angew Chem Int Ed 46:3288

    Article  CAS  Google Scholar 

  10. Mandal S, Roy D, Chaudhari RV, Sastry M (2004) Chem Mater 16:3714

    Article  CAS  Google Scholar 

  11. Vos DED, Dams M, Sels BF, Jacobs PA (2002) Chem Rev 102:3615

    Article  Google Scholar 

  12. Webb JD, MacQuarrie S, McEleney K, Crudden CM (2007) J Catal 252:97

    Article  CAS  Google Scholar 

  13. Zhi J, Song D, Li Z, Lei X, Hu A (2011) Chem Commun 47:10707

    Article  CAS  Google Scholar 

  14. Hea C, Zhanga F, Yueb L, Shanga X, Chena J, Hao Z (2012) Appl Catal B 111–112:46

    Article  Google Scholar 

  15. Huang J, Yin J, Chai W, Liang C, Shen J, Zhang F (2012) New J Chem 36:1378

    Article  CAS  Google Scholar 

  16. Morèrea J, Tenorioa MJ, Torralvob MJ, Pandoa C, Renuncioa JAR, Cabãnasa A, Super J (2011) Fluids 56:213

    Google Scholar 

  17. Gu J-L, Shi J-L, You G-J, Xiong L-M, Qian S-X, Hua Z-L, Chen H-R (2005) Adv Mater 17:557

    Article  CAS  Google Scholar 

  18. Hao X-Y, Zhang Y-Q, Wang J-W, Zhou W, Zhang C, Liu S (2006) Microporous and Mesoporous Materials 88:38

    Article  CAS  Google Scholar 

  19. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181

    Article  CAS  Google Scholar 

  20. Zhao SF, Zhou RX, Zheng XM (2004) J Mol Catal A: Chem 211:139

    Article  CAS  Google Scholar 

  21. Zhou J, Zhou R, Mo L, Zhao S, Zheng X (2002) J Mol Catal A: Chem 178:289

    Article  CAS  Google Scholar 

  22. Wang X, Chan JCC, Tseng Y-H, Cheng S (2006) Micro Meso Mater 95:57

    Article  CAS  Google Scholar 

  23. Zhu H, Lee B, Dai S, Overbury SH (2003) Langmuir 19:3974

    Article  CAS  Google Scholar 

  24. Levasseur B, Ebrahim AM, Bandosz TJ (2012) Langmuir 28:5703

    Article  CAS  Google Scholar 

  25. Li C, Zhang Q, Wang Y, Wan H (2008) Catal Lett 120:126

    Article  CAS  Google Scholar 

  26. Zhao D, Sun J, Li Q, Stucky GD (2000) Chem Mater 12:275

    Article  CAS  Google Scholar 

  27. Zhao D, Feng J, Huo Q, Melosh N, Frederickson GH, Chmelka BF, Stucky GD (1998) Science 279:548

    Article  CAS  Google Scholar 

  28. Mahata N, Vishwanathan V (2000) J Catal 196:262

    Article  CAS  Google Scholar 

  29. Ali SH, Goodwin JG (1998) J Catal 176:3

    Article  CAS  Google Scholar 

  30. Panpranot J, Pattamakomsan K, Goodwin JG, Praserthdam P (2004) Catal Commun 5:583

    Article  CAS  Google Scholar 

  31. Anderson JR (1975) Structure of metallic catalysts. Academic, London

    Google Scholar 

  32. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  33. Nohair B, MacQuarrie S, Crudden CM, Kaliaguine S (2008) J Phys Chem C 112:6065

    Article  CAS  Google Scholar 

  34. Zheng Z, Li H, Liu T, Cao R (2010) J Catal 270:268

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities, China. (Grant No. zyz2012057), Natural Science Foundation of Gan Su Province (Grant No. 0803RJZA008), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Wang, P. & Wei, X. Palladium Supported on Functionalized Mesoporous Silica as an Efficient Catalyst for Suzuki–Miyaura Coupling Reaction. Catal Lett 143, 1188–1194 (2013). https://doi.org/10.1007/s10562-013-1054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1054-y

Keywords

Navigation