Skip to main content
Log in

Palladium Nanoparticles Supported on Mesoporous Silica as Efficient and Recyclable Heterogenous Nanocatalysts for the Suzuki C–C Coupling Reaction

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Palladium (Pd) nanoparticles were synthesized using the dendrimer-template method and then immobilized on a silica support (SBA-15). The SBA-15 support material was specifically synthesized with a pore size large enough (d = 6.6 nm) to accommodate the dendrimer generation used (G-5 PAMAM-OH; d = 5.4 nm). The morphology of the Pd-supported catalyst (Pd0/SBA-15) was characterized by scanning electron microscopy coupled to an energy dispersive X-ray spectrometer which confirmed the elemental composition of the catalyst. Transmission electron microscopy confirmed the ordered array of the mesoporous SBA-15 and showed that the Pd NPs were indeed immobilized inside the pores. The catalyst had a pore size of 5.7 nm, a pore volume of 0.78 cm3/g and a surface area of 493 m2/g as determined by surface adsorption/desorption measurements from BET analysis. The prepared Pd0/SBA-15 catalyst was an efficient recyclable heterogeneous catalyst for Suzuki coupling. The catalytic activity was investigated using different experimental conditions such as temperature, catalyst loading, base and solvent variations. The catalyst gave high conversions and turnover frequencies even in aqueous solutions and at fairly low temperatures showing the potential for the green synthesis of important organic molecules through C–C bond formation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Schmid Clusters and Colloids. From Theory to Applications (VCH, Wienheim, 1994).

    Book  Google Scholar 

  2. Y. S. N. Toshima in A. T. Hubbard (ed.), Encyclopedia of Surface and Colloid Science (Marcel Derker, New York, 2002).

    Google Scholar 

  3. N. Toshima and T. Yonezawa (1998). N. J. Chem. 22, 1179.

    Article  CAS  Google Scholar 

  4. N. Miyaura and A. Suzuki (1995). Chem. Rev. 95, 2457.

    Article  CAS  Google Scholar 

  5. C. Deraedt, D. Astruc (2013). Accounts of Chemical Research.

  6. C. C. C. JohanssonSeechurn, M. O. Kitching, T. J. Colacot, and V. Snieckus (2012). Angew. Chem. Int. Ed. 51, 5062.

    Article  CAS  Google Scholar 

  7. L. Yin and J. Liebscher (2006). Chem. Rev. 107, 133.

    Article  Google Scholar 

  8. C. Tucker and J. de Vries (2002). Top. Catal. 19, 111.

    Article  CAS  Google Scholar 

  9. J. Durand, E. Teuma, and M. Gómez (2008). Eur. J. Inorg. Chem. 2008, 3577.

    Article  Google Scholar 

  10. N. Miyaura and A. Suzuki (1979). J. Chem. Soc. Chem. Commun. 19, 866.

    Article  Google Scholar 

  11. N. Miyaura, K. Yamada, and A. Suzuki (1979). Tetrahedron Lett. 20, 3437.

    Article  Google Scholar 

  12. H. Veisi, M. Hamelian, and S. Hemmati (2014). J. Mol. Catal. A 395, 25.

    Article  CAS  Google Scholar 

  13. A. Fodor, Z. Hell, and L. Pirault-Roy (2014). Appl. Catal. A 484, 39.

    Article  CAS  Google Scholar 

  14. S. Das, S. Bhunia, T. Maity, and S. Koner (2014). J. Mol. Catal. A 394, 188.

    Article  CAS  Google Scholar 

  15. A. S. Roy, J. Mondal, B. Banerjee, P. Mondal, A. Bhaumik, and S. M. Islam (2014). Appl. Catal. A 469, 320.

    Article  CAS  Google Scholar 

  16. M. M. Heravi, E. Hashemi, Y. S. Beheshtiha, S. Ahmadi, and T. Hosseinnejad (2014). J. Mol. Catal. A 394, 74.

    Article  CAS  Google Scholar 

  17. W. R. Reynolds, P. Plucinski, and C. G. Frost (2014). Catal. Sci. Technol. 4, 948.

    Article  CAS  Google Scholar 

  18. B. D. Briggs, R. T. Pekarek, and M. R. Knecht (2014). J. Phys. Chem. C 118, 18543.

    Article  CAS  Google Scholar 

  19. B. J. Borah, S. J. Borah, K. Saikia, and D. K. Dutta (2014). Appl. Catal. A 469, 350.

    Article  CAS  Google Scholar 

  20. A. Alizadeh, M. M. Khodaei, D. Kordestania, and M. Beygzadeh (2013). J. Mol. Catal. A 372, 167.

    Article  CAS  Google Scholar 

  21. W. Tang, A. G. Capacci, X. Wei, W. Li, A. White, N. D. Patel, J. Savoie, J. J. Gao, S. Rodriguez, B. Qu, N. Haddad, B. Z. Lu, D. Krishnamurthy, N. K. Yee, and C. H. Senanayake (2010). Angew. Chem. 122, 6015.

    Article  Google Scholar 

  22. D.-H. Lee and M.-J. Jin (2010). Org. Lett. 13, 252.

    Article  Google Scholar 

  23. J.-H. Noh and R. Meijboom (2014). J. Colloid Interface Sci. 415, 57.

    Article  CAS  Google Scholar 

  24. I. P. Beletskaya and A. V. Cheprakov (2000). Chem. Rev. 100, 3009.

    Article  CAS  Google Scholar 

  25. A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers, H. J. W. Henderickx, and J. G. de Vries (2003). Org. Lett. 5, 3285.

    Article  Google Scholar 

  26. K. Köhler, R. G. Heidenreich, J. G. E. Krauter, and J. Pietsch (2002). Chem. A Eur. J. 8, 622.

    Article  Google Scholar 

  27. V. Polshettiwar and Á. Molnár (2007). Tetrahedron 63, 6949.

    Article  CAS  Google Scholar 

  28. C. Rossy, J. Majimel, M. T. Delapierre, E. Fouquet, and F.-X. Felpin (2014). Appl. Catal. A 482, 157.

    Article  CAS  Google Scholar 

  29. M. Nasrollahzadeh, M. Maham, and M. M. Tohidi (2014). J. Mol. Catal. A 391, 83.

    Article  CAS  Google Scholar 

  30. R. Franzén (2000). Can. J. Chem. 78, 957.

    Article  Google Scholar 

  31. J. M. Davidson, C. Triggs (1968). J. Chem. Soc. A. 1324–1330.

  32. K. Garves (1970). J. Org. Chem. 35, 3273.

    Article  CAS  Google Scholar 

  33. G. Altenhoff, R. Goddard, C. W. Lehmann, and F. Glorius (2003). Angew. Chem. Int. Ed. 42, 3690.

    Article  CAS  Google Scholar 

  34. W. A. Herrmann, K. Öfele, S. K. Schneider, E. Herdtweck, and S. D. Hoffmann (2006). Angew. Chem. Int. Ed. 45, 3859.

    Article  CAS  Google Scholar 

  35. M. Thimmaiah and S. Fang (2007). Tetrahedron 63, 6879.

    Article  CAS  Google Scholar 

  36. D. J. M. Snelders, G. van Koten, and R. J. M. Klein (2009). Gebbink. J. Am. Chem. Soc. 131, 11407.

    Article  CAS  Google Scholar 

  37. Y. Uozumi, Y. Matsuura, T. Arakawa, and Y. M. A. Yamada (2009). Angew. Chem. Int. Ed. 48, 2708.

    Article  CAS  Google Scholar 

  38. M. Lysén and K. Köhler (2005). Synlett 2005, 1671.

    Article  Google Scholar 

  39. M. Lysén and K. Köhler (2006). Synthesis 2006, 692.

    Article  Google Scholar 

  40. N. Gürbüz, I. Özdemir, T. Seçkin, and B. Çetinkaya (2004). J. Inorg. Organomet. Polym. 14, 149.

    Article  Google Scholar 

  41. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky (1998). J. Am. Chem. Soc. 120, 6024.

    Article  CAS  Google Scholar 

  42. D. Zhao, J. Sun, Q. Li, and G. D. Stucky (2000). Chem. Mater. 12, 275.

    Article  CAS  Google Scholar 

  43. E. Vunain, R. Malgas-Enus, K. Jalama, and R. Meijboom (2013). J. Sol-Gel Sci. Technol. 68, 270.

    Article  CAS  Google Scholar 

  44. R. W. J. Scott, H. Ye, R. R. Henriquez, and R. M. Crooks (2003). Chem. Mater. 15, 3873.

    Article  CAS  Google Scholar 

  45. I. Yuranov, L. Kiwi-Minsker, P. Buffat, and A. Renken (2004). Chem. Mater. 16, 760.

    Article  CAS  Google Scholar 

  46. IUPAC (1985). Pure Appl. Chem. 57, 603.

    Google Scholar 

  47. N. Ivashchenko, V. Tertykh, V. Yanishpolskii, S. Khainakov, and A. Dikhtiarenko (2011). Materialwiss. Werkstofftech. 42, 64.

    Article  CAS  Google Scholar 

  48. Y. Jiang and Q. Gao (2005). J. Am. Chem. Soc. 128, 716.

    Article  Google Scholar 

  49. S. Jana, S. Haldar, and S. Koner (2009). Tetrahedron Lett. 50, 4820.

    Article  CAS  Google Scholar 

  50. S. Bhunia, R. Sen, and S. Koner (2010). Inorg. Chim. Acta 363, 3993.

    Article  CAS  Google Scholar 

  51. J. Guerra and M. A. Herrero (2010). Nanoscale 2, 1390.

    Article  CAS  Google Scholar 

  52. N. T. S. Phan, M. Van Der Sluys, and C. W. Jones (2006). Adv. Synth. Catal. 348, 609.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant specific unique reference number (UID) 85386). We would also like to thank the University of Johannesburg for funding, Dr. Meyer and Mr. Harris of Shimadzu South Africa for the use of their instruments, Mrs. Tutuzwa, the HRTEM operator at CSIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinout Meijboom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ncube, P., Hlabathe, T. & Meijboom, R. Palladium Nanoparticles Supported on Mesoporous Silica as Efficient and Recyclable Heterogenous Nanocatalysts for the Suzuki C–C Coupling Reaction. J Clust Sci 26, 1873–1888 (2015). https://doi.org/10.1007/s10876-015-0885-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0885-7

Keywords

Navigation