Skip to main content
Log in

Acetone Condensation Over Sulfated Zirconia Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The aldol condensation reaction over sulfated zirconia led to the production of diacetone alcohol, which was further dehydrated forming mesityl oxide. The sulfated zirconia was obtained from zirconium acetate ethane sulfonate as a single source precursor. Oxides were obtained by calcinations of the precursors at 550–650 °C, while the self-condensation reaction of acetone was carried out at 150 °C. The precursor and the produced oxides were characterized using various characterization techniques. The precursors were synthesized with different acetate to ethane sulfonate ratio, ranging from 1 to 3. The major products obtained from the condensation reaction over the resulted oxide were mesityl oxide, mesitylene isophorone, naphthalene, and pentamers. The selectivity of mesityl oxide was approximately 100 % at the initial time-on-stream.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Scheme 2
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Veloso O, Monteiro F, Sousa-Aguiar F (1991) Stud Surf Sci Catal 84:1913

    Article  Google Scholar 

  2. Wierzchawski T, Zatorski W (1991) J Catal 9:411

    Google Scholar 

  3. Rode J, Gee E, Marquez N, Uemura T, Bazagani M (1991) Catal Lett 9:103

    Article  CAS  Google Scholar 

  4. Reichle WT (1980) J Catal 63:295

    Article  CAS  Google Scholar 

  5. Hoelderich WF (1988) Stud Surf Sci Catal 41:83

    Article  CAS  Google Scholar 

  6. Colonge J (1931) Bull Soc Chem Fr 49:426

    CAS  Google Scholar 

  7. Zhang G, Hattori H, Tanabe K (1988) Appl Catal A-Gen 36:189

    Article  CAS  Google Scholar 

  8. Lippert S, Baumann W, Thomke K (1991) J Mol Catal 69:199

    Article  CAS  Google Scholar 

  9. Baigrie L (1985) J Am Chem Soc 107:3640

    Article  CAS  Google Scholar 

  10. Wang YH, Wang GJ, Xiao JH, Ma J (1993) Chem J Chin 14:1448

    CAS  Google Scholar 

  11. Di Cosimo JI, Díez VK, Apesteguía CR (1996) Appl Catal A-Gen 137:149

    Article  Google Scholar 

  12. Di Cosimo JI, Díez VK, Apesteguía CR (1998) Appl Clay Sci 13:433

    Article  Google Scholar 

  13. Luo SC, Falconer JL (1999) J Catal 185:393

    Article  CAS  Google Scholar 

  14. Wang FZ, Yang K, Chai YM, Gao PC (2008) Chin J Inorg Chem 24:1417

    CAS  Google Scholar 

  15. Stevens MG, Chen D, Foley HC (1999) Chem Comm 275

  16. Thomas L, Tanner R, Gill P, Wells R, Bailie JE, Kelly G, Jackson SD, Hutchings G (2002) J Phys Chem 4:4555

    CAS  Google Scholar 

  17. Canning AS, Jackson SD, McLeod E, Vass EM (2005) Appl Catal A-Gen 28:959

    Google Scholar 

  18. Philippou A, Anderson MW (2000) J Catal 189:395

    Article  CAS  Google Scholar 

  19. Zamora M, López T, Gómez R, Asomoza M, Melendrez R (2005) Catal Today 289:107

    Google Scholar 

  20. Ma C, Liu G, Wang Z, Li Y, Zheng J, Zhang W, Jia M (2009) React Kinet Catal Lett 98:149

    Article  CAS  Google Scholar 

  21. Rodrigues ACC, Monteiro JLF (2009) Appl Catal A-Gen 362:185

    Article  CAS  Google Scholar 

  22. Waters G, Richter O, Kraushaar-Czarnetzki B (2006) Ind Eng Chem Res 45:5701

    Article  CAS  Google Scholar 

  23. Bej SK, Thompson LT (2008) Appl Catal A-Gen 264:141

    Article  Google Scholar 

  24. Komatsu T, Misuhashi M, Yshima T (2002) Stud Surf Sci Catal 142:667

    Article  Google Scholar 

  25. Muzart J (1982) Synthesis 60

  26. Jerry M (1992) Advanced organic chemistry, 4th edn. Wiley, New York

    Google Scholar 

  27. Bell V, Gold H (1983) J Catal 79:286

    Article  CAS  Google Scholar 

  28. Xu W, Raftery D (2001) J Catal 204:110

    Article  CAS  Google Scholar 

  29. Biaglow A, Sepa J, Gorte R, White D (1995) J Catal 151

  30. Casale MT, Richman AR, Elrod MJ, Garland RM, Beaver MR, Tolbert MA (2007) Atmos Environ 41:6212–6224

    Article  CAS  Google Scholar 

  31. Hino M, Arata K (1979) Chem Lett 8:477–480

    Article  Google Scholar 

  32. Hino M, Arata K (1980) J Chem Soc Chem Commun 851

  33. Hino M, Kobayashi S, Arata K (1979) J Am Chem Soc 101:6439

    Article  CAS  Google Scholar 

  34. Kuznetsov V (1940) J Appl Chem 13:1257

    CAS  Google Scholar 

  35. Arata K (1990) Adv Catal 37:165

    Article  CAS  Google Scholar 

  36. Gillespie R, Peel T (1972) Adv Phys Org Chem 9:1

    Article  Google Scholar 

  37. Davis B, Keogh R, Srinivasan R (1994) Catal Today 20:219

    Article  CAS  Google Scholar 

  38. Arata K, Hino M, Yamagata N (1990) Bull Chem Soc 63:244

    Article  CAS  Google Scholar 

  39. Escalona E, Penarroga M (1995) Catal Lett 30:31

    Article  Google Scholar 

  40. Song S, Sayari A (1996) Cat Rev Sci Eng 38:329

    Article  CAS  Google Scholar 

  41. Yadav G, Nair J (1999) Micro Meso Mat 33:1

    Article  CAS  Google Scholar 

  42. Kooli F, Sasaki T, Watanabe M (1999) Langmuir 15:1090

    Article  CAS  Google Scholar 

  43. Hammett L, Deyrap A (1932) J Am Chem Soc 54:2721

    Article  CAS  Google Scholar 

  44. Yadav GD, Murkute AD (2004) Adv Synth Catal 346:389

    Article  CAS  Google Scholar 

  45. Benitez VM, Yori JC, Vera CR, Pieck CL, Grau JM, Parera JM (2005) Ind Eng Chem Res 44:1716

    Article  CAS  Google Scholar 

  46. Chen WH, Ko HH, Sakthivel A, Huang SJ, Liu SH, Lo AY, Tsai TC, Liu SB (2006) Catal Today 116:111

    Article  CAS  Google Scholar 

  47. Garnweitner G, Antonietti M, Niederberger M (2005) Chem Commun 21(3):397–399

    Article  Google Scholar 

  48. Gomez R, Lopez T (1998) J Sol Gel Sci Technol 11:309

    Article  CAS  Google Scholar 

  49. Wang J, Valenzyela M, Salmon J, Vazquez A, Garcia-Ruiz A, Boxhimi X (2001) Catal Today 68:21

    Article  CAS  Google Scholar 

  50. Ganapathy D, Jayeshi J (1999) Micropor Mesopor Mat 33:1

    Article  Google Scholar 

  51. Morterra C, Cerrato G, Emanule C, Bolis V (1993) J Catal 142:349

    Article  CAS  Google Scholar 

  52. Bensitel M, Saur O, Lavally J, Morrow B (1988) Mater Chem Phys 19:147

    Article  CAS  Google Scholar 

  53. Geiculescu A, Specncer H (1999) J Sol Gel Sci Tech 16:243

    Article  CAS  Google Scholar 

  54. Corma A, Martin-Aranda M (1991) J Catal 130:130

    Article  CAS  Google Scholar 

  55. Ryashentseva M (1994) Rev Heter Chem 10:23

    CAS  Google Scholar 

  56. Ryashentseva M, Minacher K, Afanas’eva Y (1964) USSR

  57. Ecormier M, Wilson K, Lee A (2003) J Catal 215:57

    Article  CAS  Google Scholar 

  58. Aiken W, Matijevic E (1996) J Mater Sci 38:329

    Google Scholar 

  59. Salvapati GS, Ramanamurty KV, Janardanarao M (1989) Selective catalytic self-condensation of acetone. J Mol Catal 54:9–30

    Article  CAS  Google Scholar 

  60. Lelkar C, Schutz A (1998) Appl Clay Sci 13:417

    Article  Google Scholar 

  61. Delannay F (1984) Chemical industries (V-15), characterization of heterogeneous catalysis. Marcel Dekker, New York

    Google Scholar 

Download references

Acknowledgments

We highly appreciate the financial support by SABIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed H. Al-Hazmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Hazmi, M.H., Choi, Y. & Apblett, A.W. Acetone Condensation Over Sulfated Zirconia Catalysts. Catal Lett 143, 705–716 (2013). https://doi.org/10.1007/s10562-013-1020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1020-8

Keywords

Navigation