Skip to main content
Log in

Heck Arylation of Conjugated Alkenes with Aryl Bromides or Chlorides Catalyzed by Immobilization of Palladium in MCM-41

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new 3-(2-aminoethylamino)propyl-functionalized MCM-41-immobilized palladium(II) complex [MCM-41-2N-PdCl2] was conveniently synthesized from commercially available and cheap 3-(2-aminoethylamino)propyltrimethoxysilane via immobilization on MCM-41, followed by reacting with palladium chloride. It was found that this heterogeneous palladium complex is a highly efficient catalyst for Heck arylation of conjugated alkenes with aryl bromides or chlorides using tetrabutylammonium bromide as additive and can be reused for at least six consecutive trials without any decreases in activity.

Graphical Abstract

Heck arylation of conjugated alkenes with aryl bromides or chlorides by using 3-(2-aminoethylamino)propyl-functionalized MCM-41-immobilized palladium(II) complex [MCM-41-2N-PdCl2] as an efficient heterogeneous catalyst with TBAB as additive is described. This heterogeneous palladium complex is highly active catalyst and can be reused at least six times without any decrease in activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Beletskaya IP, Cheprakov AV (2000) Chem Rev 100:3009

    Article  CAS  Google Scholar 

  2. Mo J, Xu L, Xiao J (2005) J Am Chem Soc 127:751

    Article  CAS  Google Scholar 

  3. Knowles JP, Whiting A (2007) Org Biomol Chem 5:31

    Article  CAS  Google Scholar 

  4. Polshettiwar V, Molnar A (2007) Tetrahedron 63:6949

    Article  CAS  Google Scholar 

  5. Iwasawa Y (1986) Tailored metal catalysts. Reidel D Publishing Company, Dordrecht

    Google Scholar 

  6. Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT (2002) Science 297:807

    Article  CAS  Google Scholar 

  7. Kirschnig A, Monenschein H, Wittenberg R (2001) Angew Chem Int Ed 40:650

    Article  Google Scholar 

  8. Yin L, Liebscher J (2007) Chem Rev 107:133

    Article  CAS  Google Scholar 

  9. Polshettiwar V, Len C, Fihri A (2009) Coord Chem Rev 253:2599

    Article  CAS  Google Scholar 

  10. Lu P, Lu J, You H, Shi P, Dong J (2009) Prog Chem 21:1434

    CAS  Google Scholar 

  11. Molnar A (2011) Chem Rev 111:2251

    Article  CAS  Google Scholar 

  12. Buchmeiser MR, Wurst K (1999) J Am Chem Soc 121:11101

    Article  CAS  Google Scholar 

  13. Schwarz J, Bohm VPW, Gardiner MG, Grosche M, Herrman WA, Hieringer W, Raudaschl-Sieber G (2000) Chem Eur J 6:1773

    Article  CAS  Google Scholar 

  14. Dahan A, Portnoy M (2003) Org Lett 5:1197

    Article  CAS  Google Scholar 

  15. Choudary BM, Madhi S, Chowdari NS, Kantam ML, Sreedhar B (2002) J Am Chem Soc 124:14127

    Article  CAS  Google Scholar 

  16. Holy NP (1980) Chemtech 366

  17. Masllorens J, Moreno-Manas M, Pla-Quintana A, Roglans A (2003) Org Lett 5:1559

    Article  CAS  Google Scholar 

  18. Shimizu K, Koizumi S, Hatamachi T, Yoshida H, Komai S, Kodama T, Kitayama Y (2004) J Catal 228:141

    Article  CAS  Google Scholar 

  19. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  20. Taguchi A, Schuth F (2005) Micropor Mesopor Mater 77:1

    Article  CAS  Google Scholar 

  21. Martin-Aranda RM, Cejka J (2010) Top Catal 53:141

    Article  CAS  Google Scholar 

  22. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    Article  CAS  Google Scholar 

  23. Zhou W, Thomas JM, Shephard DS, Johnson BFG, Ozkaya D, Maschmeyer T, Bell RG, Ge Q (1998) Science 280:705

    Article  CAS  Google Scholar 

  24. Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Nature 378:159

    Article  CAS  Google Scholar 

  25. Liu C-J, Li S-G, Pang W-Q, Che C-M (1997) Chem Commun 65

  26. Mehnert PC, Weaver DW, Ying JY (1998) J Am Chem Soc 120:12289

    Article  CAS  Google Scholar 

  27. Yang H, Zhang G, Hong X, Zhu Y (2004) J Mol Catal A 210:143

    Article  CAS  Google Scholar 

  28. Gonzalez-Arellano C, Corma A, Iglesias M, Sanchez F (2004) Adv Synth Catal 346:1758

    Article  CAS  Google Scholar 

  29. Alonso F, Beletskaya IP, Yus M (2005) Tetrahedron 61:11771

    Article  CAS  Google Scholar 

  30. Lim MH, Stein A (1999) Chem Mater 11:3285

    Article  CAS  Google Scholar 

  31. Jeffery T, David M (1998) Tetrahedron Lett 39:5751

    Article  CAS  Google Scholar 

  32. Calo V, Nacci A, Monopoli A (2006) J Mol Catal A 214:45

    Google Scholar 

  33. Herrmann WA, Alison M, Fisher J, Kocher K, Artus GRJ (1995) Angew Chem Int Ed Engl 34:2371

    Article  CAS  Google Scholar 

  34. Reetz MT, Lohmer G, Schwickardi R (1998) Angew Chem Int Ed Engl 37:481

    Article  CAS  Google Scholar 

  35. Gurtler C, Buchwald SL (1999) Chem Eur J 5:3107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (Project No. 20862008) and the Natural Science Foundation of Jiangxi Province in China (Project No. 2010GZH0062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhong Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, F., Liu, J. & Cai, M. Heck Arylation of Conjugated Alkenes with Aryl Bromides or Chlorides Catalyzed by Immobilization of Palladium in MCM-41. Catal Lett 143, 681–686 (2013). https://doi.org/10.1007/s10562-013-1013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1013-7

Keywords

Navigation