Skip to main content
Log in

n-Butane Dehydrogenation on PtSn/Carbon Modified MgO Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Carbon modified magnesium oxides (CMgO-600, CMgO-700 and CMgO-800) were prepared from pyrolyzing n-hexane vapors at 600, 700 and 800 °C, respectively, on the surface of the MgO. Modification of magnesium oxide (CMgO) with carbon increased the covalent character of the Mg–O bond, consequently decreasing the basicity. TEM and H2 chemisorption showed that the average metal particle size on CMgO was ca. 3.0 nm and the HRTEM images showed that the metal particles consisted of Pt–Sn alloys with different Pt/Sn composition. PtSn/CMgO catalysts showed much higher activity and selectivity than PtSn/MgO for the butane dehydrogenation, because a high metal dispersion on PtSn/CMgO resulted from preventing MgO dissolution during the impregnation step of metal salts on the support. The PtSn/CMgO-600 catalyst among the prepared catalysts gave the highest butenes yield.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ballarini AD, Zgolicz P, Vilella IMJ, de Miguel SR, Castro AA, Scelza OA (2010) Appl Catal A 381:83–91

    Article  CAS  Google Scholar 

  2. Bocanegra SA, Ruiz AG, de Miguel SR, Scelza OA (2004) Appl Catal A 277:11–22

    Article  CAS  Google Scholar 

  3. Larese C, Campos-Martin JM, Calvino JJ, Blanco G, Fierro JLG, Kang ZC (2002) J Catal 208:467–478

    Article  CAS  Google Scholar 

  4. Wulfers MJ, Tzolova-Muller G, Villegas JL, Murzin DY, Jentoft FC (2012) J Catal 296:132–142

    Article  CAS  Google Scholar 

  5. Llorca J, Homs N, León J, Sales J, Fierro JLG, Piscina PR (1999) Appl Catal A 189:77–86

    Article  CAS  Google Scholar 

  6. Li X, Iglesia E (2008) Chem Comm 5:594–596

    Article  Google Scholar 

  7. Choudary BM, Ranganath KVS, Pal U, Kantam ML, Sreedhar BJ (2005) J Am Chem Soc 127:13167–13171

    Article  CAS  Google Scholar 

  8. Kantam ML, Ranganath KVS, Mahendar K, Chakrapani L, Choudary BM (2007) Tetrahedron Lett 48:7646–7649

    Article  CAS  Google Scholar 

  9. Tanabe T, Nagai Y, Dohmae K, Sobukawa H, Shinjoh H (2008) J Catal 257:117–124

    Article  CAS  Google Scholar 

  10. Clarke JKA, Bradley MJ, Garvie LAJ, Craven AJ, Baird T (1993) J Catal 143:122–137

    Article  CAS  Google Scholar 

  11. Tanaka H, Kaino R, Nakagawa Y, Tomishige K (2010) Appl Catal A 378:187–194

    Article  CAS  Google Scholar 

  12. Tanaka H, Kaino R, Okumura RK, Kizuka T, Tomishige K (2009) J Catal 268:1–8

    Article  CAS  Google Scholar 

  13. Musolino MG, Maio P, Donato A, Pietropaolo R (2005) Appl Catal A 285:50–58

    Article  CAS  Google Scholar 

  14. Yoshida H, Yazawa Y, Hattori T (2003) Catal Today 87:19–28

    Article  CAS  Google Scholar 

  15. Satoa K, Sago F, Nagaoka K, Takita Y (2010) Int J Hydrogen Energy 35:5393–5399

    Article  Google Scholar 

  16. Aramendia MA, Benitez JA, Borau V, Jimenez C, Marinas JM, Ruiz JR, Urbano F (1999) Langmuir 15:1192–1197

    Article  CAS  Google Scholar 

  17. Nava N, Morales MA, Vanoni W, Toledo JA, Saitovitch EB, Viveros T (2001) Hyperfine Interact 134:81–92

    Article  CAS  Google Scholar 

  18. Bednarova L, Lyman CE, Rytter E, Holmen A (2002) J Catal 211:335–346

    CAS  Google Scholar 

  19. Shashikala V, Kumar SV, Padmasri AH, Raju BD, Mohan SV, Sarma PN, Rao KSR (2007) J Mol Catal A 268:95–100

    Article  CAS  Google Scholar 

  20. Pothiraja R, Bibinov N, Awakowicz P (2011) J Phys D Appl Phys 44:355206

    Article  Google Scholar 

  21. Barr TL (1991) J Vac Sci Technol A 9:1793–1805

    Article  CAS  Google Scholar 

  22. Barr TL (1990) Zeolites 10:760–765

    Article  CAS  Google Scholar 

  23. Liu Z, Concepcion JAC, Mustian M, Amiridis MD (2006) Appl Catal A 302:232–236

    Article  CAS  Google Scholar 

  24. Zumdahl SS, Zumdahl SA (2009) Chemistry: Media Enhanced Edition, 14th Chap., Houghton Mif, Boston

  25. Rickard JM, Genovese L, Moata A, Nitsche S (1990) J Catal 121:141–152

    Article  CAS  Google Scholar 

  26. Somodi F, Peng Z, Getsoian AB, Bell AT (2011) J Phys Chem C 115:19084–19090

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Energy Efficiency & Resources section of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and was funded by the Ministry of Knowledge Economy of the Republic of Korea. Converging Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011K000660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Deog Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shashikala, V., Jung, H., Shin, CH. et al. n-Butane Dehydrogenation on PtSn/Carbon Modified MgO Catalysts. Catal Lett 143, 651–656 (2013). https://doi.org/10.1007/s10562-013-1009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1009-3

Keywords

Navigation