Skip to main content
Log in

Cobalt Catalyzed Fischer–Tropsch Synthesis: Perspectives Opened by First Principles Calculations

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Starting from an overview of general concepts in Fischer–Tropsch synthesis, this perspective article focuses on relevant theoretical works based on density functional theory (DFT) dealing with cobalt based Fischer–Tropsch (FT) catalysis. Our bibliographic analysis highlights key scientific questions in a challenging field for research and industry. Starting from the historical and empirical concepts, we discuss how recent DFT studies give insights into the catalyst structure, the FT reaction mechanisms and the deactivation pathways. There is still no clear consensus within the scientific community about the FT reaction mechanism. Some authors propose that the first elementary step in the FT synthesis consists on CO dissociation taking place at the steps of the cobalt active phase (carbide mechanism) while some others suggest that this molecule is hydrogenated prior to its dissociation no matter the structure of the active site (insertion mechanism). As for the crucial deactivation problem, according to the computed thermodynamic properties presented by some publications, the catalyst oxidation does not seem to play a major role in its deactivation process. By contrast, the interaction of C addatoms with the Co active phase can have a strong influence on the catalyst reactivity and selectivity, through a series of structural rearrangements: the formation of various more or less unsaturated hydrocarbon molecules (such as polyaromatic rings) and the formation of a surface carbide phase. However, the impact of these phenomena on the reactivity and selectivity of the catalyst remain to be investigated in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sabatier P, Senderens JB (1902) C R Acad Sci Paris 134:514

    CAS  Google Scholar 

  2. Mittasch A, Schneider C (1916) US Patent 1,201,850

  3. Fischer F, Tropsch H (1926) Brennstoff-Chemie 7:97

    CAS  Google Scholar 

  4. Dry ME (1996) Appl Catal A 138:319

    Article  CAS  Google Scholar 

  5. Saib AM, Moodley DJ, Ciobîcă IM, Hauman MM, Sigwebela BH, Weststrate CJ, Niemantsverdriet JW, van de Loosdrecht J (2010) Catal Today 154:271

    Article  CAS  Google Scholar 

  6. van Steen E, Claeys M (2008) Chem Eng Technol 31:655

    Article  CAS  Google Scholar 

  7. Casci JL, Lok CM, Shannon MD (2009) Catal Today 145:38

    Article  CAS  Google Scholar 

  8. Adesina AA (1996) Appl Catal A 138:345

    Article  CAS  Google Scholar 

  9. Van der Laan GP, Beenackers A (1999) Catal Rev Sci Eng 41:255

    Article  Google Scholar 

  10. Overett MJ, Hill RO, Moss JR (2000) Coord Chem Rev 206:581

    Article  Google Scholar 

  11. Voillequin B, Luck F (2011) Actual Chim 350:16

    CAS  Google Scholar 

  12. Anderson RB, Köbel-Engelhardt H, Ralek M (1984) The Fischer-Tropsch Synthesis. Academic Press Inc, Orlando

    Google Scholar 

  13. de Klerk A (2011) Fischer-Tropsch Refining. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Book  Google Scholar 

  14. van Santen RA, Ghouri MM, Shetty S, Hensen EMH (2011) Catal Sci Technol 1:891

    Article  CAS  Google Scholar 

  15. van Santen RA, Ciobîcă IM, van Steen E, Ghouri MM (2011) Advances in catalysis, vol 54. Elsevier Academic Press Inc, San Diego, p 127

    Google Scholar 

  16. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  17. Hafner J (2010) J Phys Condens Matter 22:384205

    Article  CAS  Google Scholar 

  18. Hafner J (2010) Nat Mater 9:690

    Article  CAS  Google Scholar 

  19. de Klerk A (2011) Fischer-Tropsch Refining. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 73

    Book  Google Scholar 

  20. Vannice MA (1975) J Catal 37:449

    Article  CAS  Google Scholar 

  21. Dry ME (2002) J Chem Technol Biotechnol 77:43

    Article  CAS  Google Scholar 

  22. Kummer JT, De Witt TW, Emmett PH (1948) J Am Chem Soc 70:3632

    Article  CAS  Google Scholar 

  23. Storch HH, Golumbic N, Anderson RB (1951) The Fischer-Tropchs and Related Syntheses. Wiley, New York

    Google Scholar 

  24. Fahey DR (1981) J Am Chem Soc 103:136

    Article  CAS  Google Scholar 

  25. Roginski SZ (1965) In: 3rd International Congress on Catalysis. North-Holland Publishing Co., p 939

  26. Pichler H, Schulz H (1970) Chem Eng Tech 42:1162

    CAS  Google Scholar 

  27. Henrici-Olivé G, Olivé S (1976) Angew Chem Int Ed Engl 15:136

    Article  Google Scholar 

  28. Ponec V (1978) Catal Rev Sci Eng 14:153

    Google Scholar 

  29. Ponec V (1978) Catal Rev Sci Eng 18:151

    Article  CAS  Google Scholar 

  30. Brady RC, Pettit R (1980) J Am Chem Soc 102:6181

    Article  CAS  Google Scholar 

  31. Brady RC, Pettit R (1981) J Am Chem Soc 103:1287

    Article  CAS  Google Scholar 

  32. Maitlis PM (1989) Pure Appl Chem 61:1747

    Article  CAS  Google Scholar 

  33. Watwe RM, Cortright RD, Nørskov JK, Dumesic JA (2000) J Phys Chem B 104:2299

    Article  CAS  Google Scholar 

  34. Sanchez-Escribano V, Larrubia Vargas MA, Finocchio E, Busca G (2007) Appl Catal A 316:68

    Article  CAS  Google Scholar 

  35. Gaube J, Klein HF (2010) Appl Catal A 374:120

    Article  CAS  Google Scholar 

  36. Gaube J, Klein HF (2008) Appl Catal A 350:126

    Article  CAS  Google Scholar 

  37. Gaube J, Klein HF (2007) J Mol Catal A Chem 283:60

    Article  CAS  Google Scholar 

  38. Zhuo MK, Tan KF, Borgna A, Saeys M (2009) J Phys Chem C 113:8357

    Article  CAS  Google Scholar 

  39. Bundhoo A, Schweicher J, Frennet A, Kruse N (2009) Journal Phys Chem C 113:10731

    Article  CAS  Google Scholar 

  40. Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) J Catal 272:287

    Article  CAS  Google Scholar 

  41. Inderwildi RO, Jenkins SJ, King DA (2008) J Phys Chem C 112:1305

    Article  CAS  Google Scholar 

  42. Weststrate CJ, Gericke HJ, Verhoeven MWGM, Ciobîcă IM, Saib AM, Niemantsverdriet JW (2010) J Phys Chem Lett 1:1767

    Article  CAS  Google Scholar 

  43. Schweicher J, Bundhoo A, Frennet A, Kruse N, Daly H, Meunier FdrC (2010) J Phys Chem C 114:2248

    Article  CAS  Google Scholar 

  44. Markvoort AJ, van Santen RA, Hilbers PAJ, Hensen EJM (2012) Angew Chem Int Ed Engl 51:8904

    Google Scholar 

  45. Wilson J, de Groot C (1995) J Phys Chem 99:7860

    Article  CAS  Google Scholar 

  46. Hermann K (2009) In: van Santen RA, Sautet P (eds) Computational methods in catalysis and materials science. Wiley-VCH Verlag GmbH & Co. KGA, Weinheim, p 265

    Chapter  Google Scholar 

  47. Cheng J, Gong XQ, Hu P, Lok CM, Ellis P, French S (2008) J Catal 254:285

    Article  CAS  Google Scholar 

  48. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2008) J Catal 257:221

    Article  CAS  Google Scholar 

  49. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2008) J Phys Chem C 112:9464

    Article  CAS  Google Scholar 

  50. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2008) J Phys Chem C 112:6082

    Article  CAS  Google Scholar 

  51. Gong XQ, Raval R, Hu P (2004) Surf Sci 562:247

    Article  CAS  Google Scholar 

  52. Gong XQ, Raval R, Hu P (2004) Mol Phys 102:993

    Article  CAS  Google Scholar 

  53. Gong XQ, Raval R, Hu P (2005) J Chem Phys 122:024711

    Article  CAS  Google Scholar 

  54. Andersson MP, Abild-Pedersen F, Remediakis IN, Bligaard T, Jones G, Engbæk J, Lytken O, Horch S, Nielsen JH, Sehested J, Rostrup-Nielsen JR, Nørskov JK, Chorkendorff I (2008) J Catal 255:6

    Article  CAS  Google Scholar 

  55. Shetty S, van Santen RA (2011) Catal Today 171:168

    Article  CAS  Google Scholar 

  56. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) J Catal 224:206

    Article  CAS  Google Scholar 

  57. Cao XM, Burch R, Hardacre C, Hu P (2011) Catal Today 165:71

    Article  CAS  Google Scholar 

  58. Chizallet C, Bonnard G, Krebs E, Bisson L, Thomazeau C, Raybaud P (2011) J Phys Chem C 115:12135

    Article  CAS  Google Scholar 

  59. van Helden P, Van Den Berg JA, Weststrate KJ (2012) ACS Catal 2:1097

    Article  CAS  Google Scholar 

  60. Liu ZP, Hu P (2003) J Am Chem Soc 125:1958

    Article  CAS  Google Scholar 

  61. Cheng J, Song T, Hu P, Lok CM, Ellis P, French S (2008) J Catal 255:20

    Article  CAS  Google Scholar 

  62. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2009) J Phys Chem C 113:8858

    Article  CAS  Google Scholar 

  63. Cheng J, Hu P (2008) J Am Chem Soc 130:10868

    Article  CAS  Google Scholar 

  64. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2009) Surf Sci 603:2752

    Article  CAS  Google Scholar 

  65. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2010) Top Catal 53:326

    Article  CAS  Google Scholar 

  66. Kapur N, Hyun J, Shan B, Nicholas JB, Cho K (2010) J Phys Chem C 114:10171

    Article  CAS  Google Scholar 

  67. van Berge PJ, Everson RC (1997) Stud Surf Sci Catal 107:207

    Article  Google Scholar 

  68. Bartholomew CH (2001) Appl Catal A 212:17

    Article  CAS  Google Scholar 

  69. Lahtinen J, Kantola P, Jaatinen S, Habermehl-Cwirzen K, Salo P, Vuorinen J, Lindroos M, Pussi K, Seitsonen A (2005) Surf Sci 599:113

    Article  CAS  Google Scholar 

  70. Ma SH, Jiao ZY, Yang ZX (2010) Surf Sci 604:817

    Article  CAS  Google Scholar 

  71. Curulla-Ferre D, Govender A, Bromfield TC, Niemantsverdriet JW (2006) J Phys Chem B 110:13897

    Article  CAS  Google Scholar 

  72. Nieskens DLS, Curulla Ferré D, Niemantsverdriet JW (2005) ChemPhysChem 6:1293

    Article  CAS  Google Scholar 

  73. de Klerk A (2011) Fischer-Tropsch Refining. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 23

    Book  Google Scholar 

  74. Agrawal PK, Katzer JR, Manogue WH (1981) J Catal 69:312

    Article  CAS  Google Scholar 

  75. Schweiger H, Raybaud P, Toulhoat H (2002) J Catal 212:33

    Article  CAS  Google Scholar 

  76. van Steen E, Claeys M, Dry ME, van de Loosdrecht J, Viljoen EL, Visagie JL (2005) J Phys Chem B 109:3575

    Article  CAS  Google Scholar 

  77. Swart JCW (2008) PhD thesis, University of Cape Town, Cape Town

  78. Liu ZP, Hu P, Lee MH (2003) J Chem Phys 119:6282

    Article  CAS  Google Scholar 

  79. van de Loosdrecht J, Bazhinimaev B, Dalmon JA, Niemantsverdriet JW, Tsybulya SV, Saib AM, van Berge PJ, Visagie JL (2007) Catal Today 123:293

    Article  CAS  Google Scholar 

  80. Moodley D (2008) PhD thesis, Eindhoven University of Technology, Eindhoven

  81. Moodley DJ, Saib AM, van de Loosdrecht J, Welker-Nieuwoudt CA, Sigwebela BH, Niemantsverdriet JW (2011) Catal Today 171:192

    Article  CAS  Google Scholar 

  82. Andersson JM, Wallin E, Chirita V, Lünger EP, Helmersson U (2005) Phys Rev B 71:014101

    Article  CAS  Google Scholar 

  83. Tsakoumis NE, Rønning M, Borg Ø, Rytter E, Holmen A (2010) Catal Today 154:162

    Article  CAS  Google Scholar 

  84. Moodley DJ, van de Loosdrecht J, Saib AM, Overett MJ, Datye AK, Niemantsverdriet JW (2009) Appl Catal A 354:102

    Article  CAS  Google Scholar 

  85. Tan KF, Xu J, Chang J, Borgna A, Saeys M (2010) J Catal 274:121

    Article  CAS  Google Scholar 

  86. Sellmer C, Decker S, Kruse N (1998) Catal Lett 52:131

    Article  CAS  Google Scholar 

  87. Peña D, Nunsa N, Griboval-Constanta A, Khodakova AY, Lecocq V, Diehl F (2012) SynFuel, Munich, Germany, Submitted

  88. Nakamura J, Tanaka K, Toyoshima I (1987) J Catal 108:55

    Article  CAS  Google Scholar 

  89. Nolan PE, Lynch DC, Cutler AH (1998) J Phys Chem B 102:4165

    Article  CAS  Google Scholar 

  90. Barbier A, Tuel A, Arcon I, Kodre A, Martin GA (2001) J Catal 200:106

    Article  CAS  Google Scholar 

  91. Swart JCW, Ciobîcă LM, van Santen RA, van Steen E (2008) J Phys Chem C 112:12899

    Article  CAS  Google Scholar 

  92. Swart JCW, van Steen E, Ciobîcă IM, van Santenc RA (2009) Phys Chem Chem Phys 11:803

    Article  CAS  Google Scholar 

  93. Bian G, Nanba T, Koizumi N, Yamada M (2002) J Mol Catal A Chem 178:219

    Article  CAS  Google Scholar 

  94. Bian GZ, Fujishita N, Mochizuki T, Ning WS, Yamada M (2003) Appl Catal A 252:251

    Article  CAS  Google Scholar 

  95. Ducreux O, Rebours B, Lynch J, Roy-Auberger M, Bazin D (2009) OGST 64:49

    Article  CAS  Google Scholar 

  96. Karaca H, Hong JP, Fongarland P, Roussel P, Griboval-Constant A, Lacroix M, Hortmann K, Safonova OV, Khodakov AY (2010) Chem Commun 46:788

    Article  CAS  Google Scholar 

  97. Pan ZD, Bukur DB (2011) Appl Catal A 404:74

    CAS  Google Scholar 

  98. Sadeqzadeh M, Karaca H, Safonova OV, Fongarland P, Chambrey S, Roussel P, Griboval-Constant A, Lacroix M, Curulla-Ferre D, Luck F, Khodakov AY (2011) Catal Today 164:62

    Article  CAS  Google Scholar 

  99. Ducreux O, Lynch J, Rebours B, Roy M, Chaumette P (1998) Natural Gas Conversion V, p 125

  100. Enache DI, Rebours B, Roy-Auberger M, Revel R (2002) J Catal 205:346

    Article  CAS  Google Scholar 

  101. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2010) J Phys Chem C 114:1085

    Article  CAS  Google Scholar 

  102. Sautet P, Cinquini F (2010) ChemCatChem 2:636

    Article  CAS  Google Scholar 

  103. Li BH, Zhang QJ, Chen LA, Cui P, Pan XQ (2010) Phys Chem Chem Phys 12:7848

    Article  CAS  Google Scholar 

  104. Ciobîcă IM, van Santen RA, van Berge PJ, van de Loosdrecht J (2008) Surf Sci 602:17

    Article  CAS  Google Scholar 

  105. Klink C, Stensgaard I, Besenbacher F, Lagsgaard E (1995) Surf Sci 342:250

    Article  CAS  Google Scholar 

  106. Ducreux O, Lynch J, Marion MC, Roy M (2000) Abstr Pap Am Chem S 219:U259

    Google Scholar 

  107. Raucoules R, de Bruin T, Adamo C, Raybaud P (2012) Organometallics 30:3911

    Article  CAS  Google Scholar 

  108. Shetty S, Jansen APJ, van Santen RA (2009) J Am Chem Soc 131:12874

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Professor Norbert Kruse, from the Free University of Brussels, for fruitful scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Raybaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corral Valero, M., Raybaud, P. Cobalt Catalyzed Fischer–Tropsch Synthesis: Perspectives Opened by First Principles Calculations. Catal Lett 143, 1–17 (2013). https://doi.org/10.1007/s10562-012-0930-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0930-1

Keywords

Navigation