Skip to main content

Advertisement

Log in

NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al2O3-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H2S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C2H4 on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C2H4 adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C2H4 adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Galea NM, Lo JMH, Ziegler T (2009) J Catal 263:380

    Article  CAS  Google Scholar 

  2. Sinfelt JH (1983) Bimetallic catalysis: discoveries, concepts and applications. Wiley, New York

    Google Scholar 

  3. Rodriguez JA (2006) Prog Surf Sci 81:141

    Article  CAS  Google Scholar 

  4. Bligaard T, Norskov JK (2007) Electrochim Acta 52:5512

    Article  CAS  Google Scholar 

  5. Greeley J, Norskov JK, Kibler LA, El-Aziz AM, Kolb DM (2006) ChemPhysChem 7:1032

    Article  CAS  Google Scholar 

  6. Kitchin JR, Norskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93:156801

    Article  CAS  Google Scholar 

  7. Liu P, Norskov JK (2001) Phys Chem Chem Phys 3:3814

    Article  CAS  Google Scholar 

  8. Mavrikakis M, Hammer B, Norskov JK (1998) Phys Rev Lett 81:2819

    Article  Google Scholar 

  9. Wang LS, Murata K, Inaba M (2009) Appl Catal A 358:264

    Article  CAS  Google Scholar 

  10. Strohm JJ, Zheng J, Song CS (2006) J Catal 238:309

    Article  CAS  Google Scholar 

  11. Wang LS, Murata K, Inaba M (2004) Appl Catal B 48:243

    Article  CAS  Google Scholar 

  12. Wang LS, Murata K, Matsumura Y, Inaba M (2006) Energy Fuels 20:1377

    Article  CAS  Google Scholar 

  13. Molenbroek AM, Norskov JK, Clausen BS (2001) J Phys Chem B 105:5450

    Article  CAS  Google Scholar 

  14. Nikolla E, Schwank J, Linic S (2007) J Catal 250:85

    Article  CAS  Google Scholar 

  15. Ishihara A, Qian EW, Finahari IN, Sutrisna IP, Kabe T (2005) Fuel 84:1462

    CAS  Google Scholar 

  16. Jeong JH, Lee JW, Seo DJ, Seo Y, Yoon WL, Lee DK, Kim DH (2006) Appl Catal A 302:151

    Article  CAS  Google Scholar 

  17. Rangan M, Yung MM, Medlin JW (2011) J Catal 282:249

    Article  CAS  Google Scholar 

  18. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  19. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  20. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  21. Perdew JP, Yue W (1986) Phys Rev B 33:8800

    Article  Google Scholar 

  22. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  23. He X, Kong LT, Li JH, Li XY, Liu BX (2006) Acta Mater 54:3375

    Article  CAS  Google Scholar 

  24. Hyman MP, Loveless BT, Medlin JW (2007) Surf Sci 601:5382

    Article  CAS  Google Scholar 

  25. Bartholomew CH, Farrauto RJ (1976) J Catal 45:41

    Article  CAS  Google Scholar 

  26. Bartholomew CH, Pannell RB, Butler JL (1980) J Catal 65:335

    Article  CAS  Google Scholar 

  27. Yung MM, Kuhn JN (2010) Langmuir 26:16589

    Article  CAS  Google Scholar 

  28. Ravel B, Newville M (2005) Phys Scr T115:1007

    Article  CAS  Google Scholar 

  29. Newville M (2001) J Synchrotron Radiat 8:322

    Article  CAS  Google Scholar 

  30. Newville M (2001) J Synchrotron Radiat 8:96

    Article  CAS  Google Scholar 

  31. Ashrafi M, Pfeifer C, Proell T, Hofbauer H (2008) Energy Fuels 22:4190

    Article  CAS  Google Scholar 

  32. Oudar J (1980) Rev Sci Eng 22:1980

    Article  Google Scholar 

  33. Barbier J, Lamy-Pitara E, Marecot P, Boitiaux JP, Cosyns J, Verna F (1990) Adv Catal 37:279

    Article  CAS  Google Scholar 

  34. Rodriguez JA, Chaturvedi S, Kuhn M, Hrbek J (1998) J Phys Chem B 102:5511

    Article  CAS  Google Scholar 

  35. Rodriguez JA, Hrbek J (1999) Acc Chem Res 32:719

    Article  CAS  Google Scholar 

  36. Choi YM, Compson C, Lin MC, Liu ML (2007) J Alloy Compd 427:25

    Article  CAS  Google Scholar 

  37. Chen YS, Xie C, Li Y, Song CS, Bolin TB (2010) Phys Chem Chem Phys 12:5707

    Article  CAS  Google Scholar 

  38. Kuhn JN, Lakshminarayanan N, Ozkan US (2008) J Mol Catal A 282:9

    Article  CAS  Google Scholar 

  39. Largentiere PC, Figoli NS (1997) J Chem Technol Biotechnol 69:261

    Article  CAS  Google Scholar 

  40. Porto LM, Butt JB (2002) Ind Eng Chem Res 41:5420

    Article  CAS  Google Scholar 

  41. Rodriguez JC, Romeo E, Fierro JLG, Santamaria J, Monzon A (1997) Catal Today 37:255

    Article  CAS  Google Scholar 

  42. Sato K, FujiMoto K (2007) Catal Commun 8:1697

    Article  CAS  Google Scholar 

  43. Tomishige K, Miyazawa T, Kimura T, Kunimori K, Koizumi N, Yamada M (2005) Appl Catal B 60:299

    Article  CAS  Google Scholar 

  44. Hammer B, Norskov JK (1995) Nature 376:238

    Article  CAS  Google Scholar 

  45. Hammer B, Norskov JK (1995) Surf Sci 343:211

    Article  CAS  Google Scholar 

  46. Dewar MJS (1951) Bulletin de la societe chimnique de france 18:c79

    Google Scholar 

  47. Chatt J, Duncanson LA (1953) J Chem Soc 2939

  48. Triguero L, Pettersson LGM, Minaev B, Agren H (1998) J Chem Phys 108:1193

    Article  CAS  Google Scholar 

  49. Demuth JE, Ibach H (1978) Surf Sci 78:L238

    Article  CAS  Google Scholar 

  50. Hammer L, Muller K (1990) Prog Surf Sci 35:103

    Article  CAS  Google Scholar 

  51. Yilmazer ND, Fellah MF, Onal I (2010) Appl Surf Sci 256:5088

    Article  CAS  Google Scholar 

  52. Brown WA, Kose R, King DA (1999) J Mol Catal A 141:21

    Article  CAS  Google Scholar 

  53. Lee SA, Park KW, Kwon BK, Sung YE (2003) J Ind Eng Chem 9:63

    CAS  Google Scholar 

  54. Magrini-Bair KA, Czernik S, French R, Parent YO, Chornet E, Dayton DC, Feik C, Bain R (2006) Appl Catal 318:199

    Google Scholar 

  55. Nikolla E, Schwank J, Linic S (2009) J Am Chem Soc 131:2747

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research funding from the National Renewable Energy Laboratory through subcontract KXEA-3-33606-26 and from the U.S. Department of Energy’s Biomass Program Contract DE-AC36-99-GO-10337 are gratefully acknowledged. This research utilized the NCSA-Teragrid system and the high-performance computing cluster carbon at Argonne National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Will Medlin.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5418 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangan, M., Yung, M.M. & Medlin, J.W. NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance. Catal Lett 142, 718–727 (2012). https://doi.org/10.1007/s10562-012-0830-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0830-4

Keywords

Navigation