Skip to main content
Log in

Bimetallic Ni–Cu Catalysts for the Low-Temperature Ethanol Steam Reforming: Importance of Metal–Support Interactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The activity of bimetallic Ni–Cu catalysts in ethanol steam reforming was evaluated and compared to the activity of the corresponding monometallic Ni catalyst. Copper addition positively affected the catalytic activity only if the proper metal–support interactions, as well as the proper ratio between the different reducible species, were maintained. This target can be pursued by tuning the synthesis conditions.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Benito M, Sanz JL, Isabel R, Padilla R, Arjona R, Daza L (2005) J Power Sources 151:11

    Article  CAS  Google Scholar 

  2. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098

    Article  CAS  Google Scholar 

  3. de Lima SM, da Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB (2008) J Catal 257:356

    Article  Google Scholar 

  4. Birot A, Epron F, Descorme C, Duprez D (2008) Appl Catal B 79:17

    Article  CAS  Google Scholar 

  5. Cai W, Wang F, Zhan E, Van Veen AC, Mirodatos C, Shen W (2008) J Catal 257:96

    Article  CAS  Google Scholar 

  6. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Appl Catal B 43:13

    Article  CAS  Google Scholar 

  7. Li S, Li M, Zhang C, Wang S, Ma X, Gong J (2012) Int J Hydrogen Energy 37:2940

    Article  CAS  Google Scholar 

  8. Wang F, Li Y, Cai W, Zhan E, Mu X, Shen W (2009) Catal Today 146:31

    Article  CAS  Google Scholar 

  9. Zhang Z, Verykios XE (1996) Appl Catal A 138:109

    Article  CAS  Google Scholar 

  10. Al-Fatish ASA, Ibrahim AA, Fakeeha AH, Soliman MA, Siddiqui MRH, Abasaeed AE (2009) Appl Catal A 364:150

    Article  CAS  Google Scholar 

  11. Li Z, Hu X, Zhang L, Liu S, Lu G (2012) Appl Catal A 417–418:281

    Article  Google Scholar 

  12. Centi G, Perathoner S (2009) Catal Today 148:191

    Article  CAS  Google Scholar 

  13. Gonzalez-DelaCruz VM, Holgado JP, Pereníguez R, Caballero A (2008) J Catal 257:307

    Article  CAS  Google Scholar 

  14. Christensen KO, Chen D, Lødeng R, Holmen A (2006) Appl Catal A 314:9

    Article  CAS  Google Scholar 

  15. Chen D, Christensen KO, Ochoa-Fernandez E, Yu Z, Tøtdal B, Latorre N, Monzòn A, Holmen A (2005) J Catal 229:82

    Article  CAS  Google Scholar 

  16. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) Appl Catal B 56:171

    Article  CAS  Google Scholar 

  17. Qihai L, Zili L, Xinhua Z, Cuijin L, Jiao D (2011) J Rare Earths 29:872

    Article  Google Scholar 

  18. Remón J, Medrano JA, Bimbela F, García L, Arauzo J (2013) Appl Catal B 132–133:433

    Article  Google Scholar 

  19. Fierro V, Akdim O, Mirodatos C (2003) Green Chem 5:20

    Article  CAS  Google Scholar 

  20. Calles JA, Carrero A, Vizcaíno AJ (2009) Microporous Mesoporous Mater 119:200

    Article  CAS  Google Scholar 

  21. Tuza PV, Manfro RL, Ribeiro NFP, Souza MMVM (2013) Renew Energy 50:408

    Article  CAS  Google Scholar 

  22. Nichele V, Signoretto M, Menegazzo F, Gallo A, Dal Santo V, Cruciani G, Cerrato G (2012) Appl Catal B 111–112:225

    Article  Google Scholar 

  23. Rossetti I, Biffi C, Bianchi CL, Nichele V, Signoretto M, Menegazzo F, Finocchio E, Ramis G, Di Michele A (2012) Appl Catal B 117–118:384

    Article  Google Scholar 

  24. Rossetti I, Gallo A, Dal Santo V, Bianchi CL, Nichele V, Signoretto M, Finocchio E, Ramis G, Di Michele A (2013) ChemCatChem 5:294

    Article  CAS  Google Scholar 

  25. Rossetti I, Lasso J, Nichele V, Signoretto M, Finocchio E, Ramis G, Di Michele A (2014) Appl Catal B 150–151:257

    Article  Google Scholar 

  26. Nichele V, Signoretto M, Pinna F, Menegazzo F, Rossetti I, Cruciani G, Cerrato G, Di Michele A (2014) Appl Catal B 150–151:12

    Article  Google Scholar 

  27. Zane F, Melada S, Signoretto M, Pinna F (2006) Appl Catal A 299:137

    Article  CAS  Google Scholar 

  28. Asencios YJO, Assaf EM (2013) Fuel Process Technol 106:247

    Article  CAS  Google Scholar 

  29. Bellido JDA, Assaf EM (2008) J Power Sources 177:24

    Article  CAS  Google Scholar 

  30. Zhang L, Lin J, Chen Y (1992) J Chem Soc, Faraday Trans 88(14):2075

    Article  CAS  Google Scholar 

  31. Yan QG, Weng WZ, Wan HL, Toghiani H, Toghiani RK, Pittman CU Jr (2003) Appl Catal A 239:43

    Article  CAS  Google Scholar 

  32. Song YQ, He DH, Xu BQ (2008) Appl Catal A 337:19

    Article  CAS  Google Scholar 

  33. García V, Fernández JJ, Ruíz W, Mondragón F, Moreno A (2009) Catal Commun 11:240

    Article  Google Scholar 

  34. Bellido JDA, De Souza JE, M’Peko JC, Assaf EM (2009) Appl Catal A 358:215

    Article  CAS  Google Scholar 

  35. Bellido JDA, Assaf EM (2009) Appl Catal A 352:179

    Article  CAS  Google Scholar 

  36. Fabris S, Paxton AT, Finnis MW (2002) Acta Mater 50:5171

    Article  CAS  Google Scholar 

  37. Vizcaino AJ, Carrero A, Calles JA (2007) Int J Hydrogen Energy 32:1450

    Article  CAS  Google Scholar 

  38. Zhang L, Liu J, Li W, Guo C, Zhang J (2009) J Natural Gas Chem 18:55

    Article  Google Scholar 

  39. Pérez-Hernández R, Mondragón Galicia G, Mendova Anaya D, Palacios J, Angeles-Chavez C, Arenas-Alatorre J (2008) Int J Hydrogen Energy 33:4569

    Article  Google Scholar 

  40. Maia TA, Bellido JDA, Assaf EM, Assaf JM (2007) Quim Nova 30:339

    Article  CAS  Google Scholar 

  41. López P, Mondragón-Galicia G, Espinosa-Pesqueira ME, Mendoza-Anaya D, Fernández ME, Gómez-Cortés A, Bonifacio J, Martínez-Barrera G, Pérez-Hernández R (2012) Int J Hydrogen Energy 37:9018

    Article  Google Scholar 

  42. Nichele V, Signoretto M, Menegazzo F, Rossetti I, Cruciani G (2014) Int J Hydrogen Energy 39:4252

    Article  CAS  Google Scholar 

  43. Rossetti I, Lasso J, Finocchio E, Ramis G, Nichele V, Signoretto M, Di Michele A (2014) Appl Catal A 477:42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Carlotta Pagan for the excellent technical assistance. Valentina Nichele acknowledges MIUR for her PhD scholarship. “The characterisation was partly supported by H2FC European Infrastructure Project (IntegratingEuropean Infrastructure to support science and development ofHydrogen and Fuel Cell Technologies towards European Strategy for Sustainable Competitive and Secure Energy), Project Reference 284522”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Signoretto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichele, V., Signoretto, M., Pinna, F. et al. Bimetallic Ni–Cu Catalysts for the Low-Temperature Ethanol Steam Reforming: Importance of Metal–Support Interactions. Catal Lett 145, 549–558 (2015). https://doi.org/10.1007/s10562-014-1414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1414-2

Keywords

Navigation