Skip to main content

Advertisement

Log in

Synthesis of SnO2 Nanostructures and Their Application for Hydrogen Evolution Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

SnO2 hierarchical architectures were synthesized with a surfactant-free hydrothermal synthesis route. We found that the acid or alkaline amount (HCl or NaOH) of the solution had a remarkable effect on the morphology of as-synthesized products. The SnO2 nanostructures were selected as a support of Pt catalyst (Pt/SnO2) for hydrogen evolution reaction (HER) in the acidic media. The influence of SnO2 morphologies on the electrochemical performance has been investigated by cyclic voltammetry and linear sweeping voltammetry using the rotating disk electrodes. In addition, the effect on the catalytic activity in different electrolyte concentration was taken into account. Kinetic study shows that the HER on the Pt/SnO2(flower) electrocatalyst gives a higher exchange current density and a lower overpotential in H2SO4 solution with high concentration.

Graphical Abstract

Tunable synthesis of SnO2nanostructures has been achieved via hydrothermal method without using any surfactants. The SnO2nanostructures have been used as multidimensional frame for loading Pt nanoparticles for hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morles AM, Lieber CM (1998) Science 279:208

    Article  Google Scholar 

  2. He JH, Hsin CL, Liu J, Chen LJ, Wang ZL (2007) Adv Mater 19:781

    Article  CAS  Google Scholar 

  3. Hays J, Punnoose A, Baldner R, Engelhard MH, Peloquin J, Reddy KM (2005) Phys Rev B 72:075203

    Article  Google Scholar 

  4. Zhao J, Yue YH, Zhai DW, Miao CX, Shen JY, He HY, Hua WM, Gao Z (2009) Catal Lett 133:119

    Article  CAS  Google Scholar 

  5. Wang X, Zhuang J, Peng JQ, Li YD (2005) Nature 437:121

    Article  CAS  Google Scholar 

  6. Liu XG (2009) Angew Chem Int Ed 48:3018

    Article  CAS  Google Scholar 

  7. Li L, Yang YW, Li GH, Zhang LD (2006) Small 2:548

    Article  CAS  Google Scholar 

  8. Lee JS, Sim SK, Min B, Cho K, Kim SW, Kim S (2004) J Cryst Growth 267:145

    Article  CAS  Google Scholar 

  9. Xu G, Zhang YW, Sun X, Xu CL, Yan CH (2005) J Phys Chem B 109:3269

    Article  CAS  Google Scholar 

  10. Sugimoto H, Tsukube H, Tanaka K (2004) Eur J Inorg Chem 23:4550

    Article  Google Scholar 

  11. Enesca A, Andronic L, Duta A (2012) Catal Lett 142:224

    Article  CAS  Google Scholar 

  12. Jia TK, Wang WM, Long F, Fu ZY, Wang H, Zhang QJ (2009) J Phys Chem C 113:9071

    Article  CAS  Google Scholar 

  13. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  14. Cheng GE, Wang JM, Liu XW, Huang KX (2006) J Phys Chem B 110:16208

    Article  CAS  Google Scholar 

  15. Wang H, Xu JQ, Pan QY (2010) Cryst Eng Comm 12:1280

    Google Scholar 

  16. Zhang HL, Hu CG, He XS, Liu H, Du GJ, Zhang Y (2011) J Power Sources 196:4499

    Article  CAS  Google Scholar 

  17. Penner SS (2006) Energy 31:33

    Article  CAS  Google Scholar 

  18. Seto K, Iannelli A, Love B, Lipkowski J (1987) J Electroanal Chem 226:351

    Article  CAS  Google Scholar 

  19. Wu M, Shen PK, Wei ZD, Song SQ, Nie M (2007) J Power Sources 166:310

    Article  CAS  Google Scholar 

  20. Ham DJ, Ganesan R, Lee JS (2008) Int J Hydrogen Energy 33:6865

    Article  CAS  Google Scholar 

  21. Wang H, Liang QQ, Wang WJ, An YR, Li JH, Guo L (2011) Cryst Growth Des 11:2942

    Article  CAS  Google Scholar 

  22. Scherrer P, Gottingen NGW (1918) Math-Phy KI 2:96

    Google Scholar 

  23. Pozio A, De Francesco M, Cemmi A, Cardellini F, Giorgi L (2002) J Power Sources 105:13

    Article  CAS  Google Scholar 

  24. Xie FY, Tian ZQ, Meng H, Shen PK (2005) J Power Sources 141:211

    Article  CAS  Google Scholar 

  25. Lee JS, Volpe L, Ribeiro FH, Boudart M (1988) J Catal 112:44

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the NSFC (60976055), SRFDP (20110191110034), Project (WLYJSBJRCTD201101) of the Innovative Talent Funds for 985 Project, and the Large-Scale Equipment Sharing Fund of Chongqing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguo Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Hu, C., Chen, S. et al. Synthesis of SnO2 Nanostructures and Their Application for Hydrogen Evolution Reaction. Catal Lett 142, 809–815 (2012). https://doi.org/10.1007/s10562-012-0826-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0826-0

Keywords

Navigation