Skip to main content

Advertisement

Log in

The Effect of Alkoxide Ionic Liquids on the Synthesis of Dimethyl Carbonate from CO2 and Methanol over ZrO2–MgO

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The use of carbon dioxide in the synthesis of chemicals, such as dimethyl carbonate (DMC), constitutes an environmentally attractive alternative to hazardous and toxic reagents. However, the direct synthesis of DMC from methanol and CO2 is characterized by low yields due to the reaction equilibrium and the thermodynamic limitations \( \left( {\Updelta G_{298K}^{o} \; = \; + 2 6. 3 {\text{ kJ}}/{\text{mol}}} \right) \). Alkoxide ionic liquids possessing alkylimidazolium and benzalkonium cations were prepared, characterised and tested together with ZrO2–MgO catalyst for the synthesis of DMC from methanol and CO2. By using the novel ionic liquid as additives, ca. 12% conversion of methanol, and 90% selectivity to DMC was obtained at 120 °C and 7.5 MPa. The water abstracting potential of the ionic liquids influenced the conversion of methanol and the selectivity to DMC. The alkoxide ionic liquids were recovered and reused in DMC synthesis without loss in activity and selectivity.

Graphical abstract

Synthesis of DMC from CO2 and methanol catalysed by ZrO2–MgO using ionic liquid alkoxides as water abstracting additives. Comparison of the fresh and regenerated ionic liquid at 120 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tundo P, Selva M (2002) Acc Chem Res 35:706–716

    Article  CAS  Google Scholar 

  2. Tundo P (2001) Pure Appl Chem 73:1117–1124

    Article  CAS  Google Scholar 

  3. Pacheco MA, Marshall CL (1997) Energy Fuels 11:2–29

    Article  CAS  Google Scholar 

  4. King ST (1997) Catal Today 33:173–182

    Article  CAS  Google Scholar 

  5. Aresta M, Quaranta E (1997) Chem Tech 27:32–40

    CAS  Google Scholar 

  6. Babad H, Zeiler AG (1997) Chem Rev 73:75–91

    Article  Google Scholar 

  7. Notz R, Tönnies I, McCann N, Scheffknecht G, Hasse H (2011) Chem Eng Technol 34:163–172

    Article  CAS  Google Scholar 

  8. Krush A, Vogel H (2008) Chem Eng Technol 31:23–32

    Article  Google Scholar 

  9. Bruggink A, Schoevaart R, Kieboom T (2003) Org Process Res Dev 7:622–640

    Article  CAS  Google Scholar 

  10. Aresta M (2002) Fuel Chem Div Preprints 47:255

    CAS  Google Scholar 

  11. Lee MY, Park DC (1991) Stud Surf Sci Catal 66:631–640

    Article  CAS  Google Scholar 

  12. Kizlink J, Pastucha I (1995) Collect Czech Chem Commun 60:687–692

    Article  CAS  Google Scholar 

  13. Kizlink J, Pastucha I (1994) Collect Czech. Chem Commun 59:2116–2118

    Article  Google Scholar 

  14. Fang S, Fujimoto K (1996) Appl Catal A 142:L1–L3

    Article  CAS  Google Scholar 

  15. Li C-F, S-He Zhong (2003) Catal Today 82:83–90

    Article  CAS  Google Scholar 

  16. Tomishige K, Sakaihiro T, Ikeda Y, Fujimoto K (1999) Catal Lett 58:225–229

    Article  CAS  Google Scholar 

  17. Jung KT, Bell AT (2001) J Catal 204:339–347

    Article  CAS  Google Scholar 

  18. Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K (2000) J Catal 192:355–362

    Article  CAS  Google Scholar 

  19. Eta V, Mäki-Arvela P, Murzin DYu, Salmi T, Mikkola J-P (2008) Progress in heterogeneous catalysis. In: Marmaduke DL (ed) Nova Science Publishers. Hauppauge, NY, pp 135–155

    Google Scholar 

  20. Tomishige K, Kunimori K (2002) Appl Catal A Gen. 237:103–109

    Article  CAS  Google Scholar 

  21. Honda M, Kuno S, Sonehara S, Fujimoto K, Suzuki K, Nakagawa Y, Tomishige K (2011) Chem Cat Chem 3:365–370

    CAS  Google Scholar 

  22. Bhanage BM, Fujita S, Ikushima Y, Arai M (2001) Appl Catal A Gen 219:259–266

    Article  CAS  Google Scholar 

  23. De C, Lu B, Lv H, Yu Y, Bai Y, Cai Q (2009) Catal Lett 128:459–464

    Article  CAS  Google Scholar 

  24. Cui H, Wang T, Wang F, Gu C, Wang P, Dai Y (2004) Ind Eng Chem Res 43:7732–7739

    Article  CAS  Google Scholar 

  25. Eta V, Mäki-Arvela P, Leino A-R, Kordás K, Salmi T, Murzin D, Mikkola J-P (2010) Ind Eng Chem Res 49:9609–9617

    Article  CAS  Google Scholar 

  26. Dong WS, Zhou X, Xin C, Liu C, Liu Z (2008) Appl Catal A Gen 334:100–105

    Article  CAS  Google Scholar 

  27. Ju HY, Manju MD, Kim KH, Park SW, Park DW (2007) Korean J Chem Eng 4:917–919

    Article  Google Scholar 

  28. Virtanen P, Karhu H, Toth G, Kordas K, Mikkola J-P (2009) J Catal 263:209–219

    Article  CAS  Google Scholar 

  29. Ju HY, Manju MD, Park DW, Choe Y, Park SW (2007) React Kinet Catal Lett 90:3–9

    Article  CAS  Google Scholar 

  30. Wang H, Lu B, Cai QH, Wu F, Shan YK (2005) Chin Chem lett 16:1267–1270

    CAS  Google Scholar 

  31. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  32. Huddleton JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Green Chem 3:156–164

    Article  Google Scholar 

  33. Tommasi I, Sorrentino F (2005) Tetrahedron Lett 46:2141–2145

    Article  CAS  Google Scholar 

  34. Tommasi I, Sorrentino F (2006) Tetrahedron Lett 47:6453–6456

    Article  CAS  Google Scholar 

  35. Holbrey JD, Reichert WM, Tkatchenko I, Bouajila E, Walter O, Tommasi I, Rogers RD (2003) Chem Commun 2003, 28–29. doi:10.1039/B211519K

  36. Duong HA, Tekavec NT, Arif AM, Louie J (2004) Chem Commun 1:112–113

    Article  Google Scholar 

  37. Hong ST, Park HS, Lim JS, Lee Y-W, Masakazu Anpo M, Kim J-D (2006) Res Chem Intermed 32:737–747

    Article  CAS  Google Scholar 

  38. Ballivet-Tkatchenko D, Chambrey S, Keiski R, Ligabue R, Plasseraud L, Richard P, Turunen H (2006) Catal Today 115:80–87

    Article  CAS  Google Scholar 

  39. Ilgen F, Ott D, kralisch D, Palmberger A, König B (2009) Green Chem 11:1948–1954

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the activities of Åbo Akademi Process Chemistry Centre within the Finnish Centre of Excellence (2006–2011), and the KETJU research programme (2006–2010) by the Academy of Finland. The authors are grateful to the Academy of Finland for the financial support under the grants 120853, 124357 and 128626. This work is also associated with the activities of Umeå University Chemical-Biological Centre whereupon financial support from Bio4Energy programme, Kempe Foundations and Knut and Alice Wallenberg Foundation are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Yu. Murzin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eta, V., Mäki-Arvela, P., Salminen, E. et al. The Effect of Alkoxide Ionic Liquids on the Synthesis of Dimethyl Carbonate from CO2 and Methanol over ZrO2–MgO. Catal Lett 141, 1254–1261 (2011). https://doi.org/10.1007/s10562-011-0666-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0666-3

Keywords

Navigation