Skip to main content
Log in

The Oxidative Dehydrogenation of n-Hexane over a β-NiMoO4 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The oxidative dehydrogenation of n-hexane over β-NiMoO4 catalysts was performed in a fixed bed continuous flow reactor. Catalytic testing was done below and above the flammability limits for n-hexane and the effect of reaction conditions was examined to optimize hexene selectivity. The contact times (0.61-2.4 s), n-hexane/oxygen molar ratios and nitrogen dilution (31–60%) were varied. The highest selectivity to total hexenes obtained was 54.7% which was made up of 27.4% 1-hexene, 25.0% trans-2-hexene and 2.3% cis-2-hexene. These selectivities were obtained at a fuel/O2 ratio of 2.2, a contact time of 1.0 s and 43% nitrogen dilution.

Graphical Abstract

The oxidative dehydrogenation of n-hexane was investigated over β-NiMoO4. Effects of contact time, dilution and fuel air ratios were investigated. The highest selectivity to the hexenes, mainly 1-hexene, was obtained at a contact time of 1 s at a fuel/air ratio of 2.2 and 43% N2 dilution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cavani F, Trifiro F (1992) Appl Catal A 88:115

    Article  CAS  Google Scholar 

  2. Dry ME (1983) Applied industrial catalysis. Academic Press, London

    Google Scholar 

  3. Friedrich HB, Govender N, Mathebula MR (2006) Appl Catal A 297:81

    Article  CAS  Google Scholar 

  4. Centi G, Trifiro F (1988) Catal Today 3:151

    Article  CAS  Google Scholar 

  5. O’ Connor RP, Schmidt LD (2000) Chem Eng Sci 55:5693

    Article  Google Scholar 

  6. Schmidt LD, Klein EJ, Leclerc CAS, Krummenarcher JJ, West LN (2003) Chem Eng Sci 58:1037

    Article  CAS  Google Scholar 

  7. Zhan B, Moden B, Dakka J, Santiesteban JG, Iglesia E (2007) J Catal 245:316

    Article  CAS  Google Scholar 

  8. Moden B, Zhan B, Dakka J, Santiesteban JG, Iglesia E (2007) J Phys Chem 111:1402

    CAS  Google Scholar 

  9. Reddy JS, Sivasanker S, Ratnasamy P (1991) J Mol Catal 70:335

    Article  CAS  Google Scholar 

  10. Kim JK, Ko YS, Kim TJ, Ahn WS (1995) J Korean Inst Chem Eng 33:511

    CAS  Google Scholar 

  11. Thomas JM, Raja R, Sankar G, Bell RG (1999) Nature 398:227

    Article  CAS  Google Scholar 

  12. Raja R, Lee S-O, Sanchez–Sanchez M, Sankar G, Harris KDM, Johnson BFG, Thomas JM (2002) Top Catal 20:85

    Article  CAS  Google Scholar 

  13. Kaddouri A, Anouchinsky R, Mazzocchia C, Madeira LM, Portela MF (1998) Catal Today 40:201

    Article  CAS  Google Scholar 

  14. Mazzocchia C, Tempesti E, Aboumrad C (1992). US Patent 5,086,032, 4 Feb 1992

  15. Mazzocchia C, Aboumrad C, Diagne C, Tempesti E, Herrmann JM, Thomas G (1991) Catal Lett 10:181

    Article  CAS  Google Scholar 

  16. Lezla O, Bordes E, Courtine P (1997) J Catal 170:346

    Article  CAS  Google Scholar 

  17. Mazzocchia C, Anouchinsky R, Kaddouri A, Sautel M, Thomas G (1993) J Therm Anal 40:1253

    Article  CAS  Google Scholar 

  18. Itenberg IS, Andrushkevich MM, Buyanov RA, Khramova GA, Sitnikov VG (1976) Kinet Catal 17:867

    Google Scholar 

  19. Mazzocchia C, Del Rosso R, Centola P (1980) An Quim 79:108

    Google Scholar 

  20. Pilipenko FS, Tsailingold AL, Stepanov GA (1976) Kinet Catal 17:842

    Google Scholar 

  21. Pillay B, Mathebula MR, Friedrich HB (2009) Appl Catal A 361:57

    Article  CAS  Google Scholar 

  22. Sleight AW, Chamberland BL, Weiher JF (1968) Inorg Chem 7:1093

    Article  CAS  Google Scholar 

  23. Sleight AW, Chamberland BL (1968) Inorg Chem 7:1672

    Article  CAS  Google Scholar 

  24. Perry RH, Green DW (1999) Perry’s chemical engineers’ handbook, Section 26, The McGraw Hill, New York, p 54

  25. Pillay B (2009) A study of nickel molybdenum oxide catalysts for the oxidative dehydrogenation of n-hexane. Ph.D. thesis, Department of Chemistry, University of KwaZulu-Natal, Durban

  26. Ozkan U, Schrader GL (1985) J Catal 95:120

    Article  CAS  Google Scholar 

  27. Madeira LM, Portela MF, Mazzocchia C, Kaddouri A, Anouchinsky R (1998) Catal Today 40:229

    Article  CAS  Google Scholar 

  28. Cavani F, Trifiro F (1999) Catal Today 51:561

    Article  CAS  Google Scholar 

  29. Mamedov EA (1994) Appl Catal A 116:49

    Article  CAS  Google Scholar 

  30. Mars P, van Krevelen DW (1954) Chem Eng Sci Special Suppl 3:41

    CAS  Google Scholar 

  31. Govender N (2008) Ph.D. thesis, University of KwaZulu-Natal, Durban

  32. Pantazidis A, Burrows A, Kiely CJ, Mirodatos C (1998) J Catal 177:325

    Article  CAS  Google Scholar 

  33. Wojciechowski BW (1998) Catal Rev Sci Eng 40:209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sasol Technology, THRIP, NRF and c*change for support and Denzil Moodley (Sasol, Technical University of Eindhoven) for the XPS and TPO-MS results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger B. Friedrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillay, B., Mathebula, M.R. & Friedrich, H.B. The Oxidative Dehydrogenation of n-Hexane over a β-NiMoO4 Catalyst. Catal Lett 141, 1297–1304 (2011). https://doi.org/10.1007/s10562-011-0651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0651-x

Keywords

Navigation