Skip to main content
Log in

TiO2/Ni Inverse-Catalysts Prepared by Atomic Layer Deposition (ALD)

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Atomic layer deposition (ALD) was used to deposit TiO2 on Ni particles, and the catalytic activity of Ni for CO2 reforming of methane (CRM) was evaluated. In the presence of TiO2 islands on Ni surfaces, the onset temperature of the CRM reaction was lower than that of bare Ni. During the CRM reaction, carbon was deposited on the surface of bare Ni, which reduced the catalytic activity of the surface with time, and TiO2 islands were able to remove carbon deposits from the surface. When the Ni surface was completely covered with TiO2, the catalytic activity disappeared, demonstrating that tuning of the TiO2 coverage on Ni is important to maximize the activity of the CRM reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guczi L, Peto G, Beck A, Frey K, Geszti O, Molnar G, Daroczi C (2003) J Am Chem Soc 125:4332

    Article  CAS  Google Scholar 

  2. Haruta M (2004) Gold Bull 37:27

    Article  CAS  Google Scholar 

  3. Potapenko DV, Hrbek J, Osgood RM (2008) ACS Nano 2:1353

    Article  CAS  Google Scholar 

  4. Rodriguez JA, Graciani J, Evans J, Park JB, Yang F, Stacchiola D, Senanayake SD, Ma SG, Perez M, Liu P, Sanz JF, Hrbek J (2009) Angew Chem Int Ed 48:8047

    Article  CAS  Google Scholar 

  5. Rodriguez JA, Hrbek J (2010) Surf Sci 604:241

    Article  CAS  Google Scholar 

  6. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Science 318:1757

    Article  CAS  Google Scholar 

  7. Guczi L, Frey Z, Beck A, Peto B, Daroczi CS, Kruse N, Chenakin S (2005) Appl Catal A 291:116

    Article  CAS  Google Scholar 

  8. Horvath A, Beck A, Sarkany A, Stefler G, Varga Z, Geszti O, Toth L, Guczi L (2006) J Phys Chem B 110:15417

    Article  CAS  Google Scholar 

  9. Guczi L, Paszti Z, Frey K, Beck A, Peto G, Daroczy CS (2006) Top Catal 39:137

    Article  CAS  Google Scholar 

  10. Frey K, Beck A, Peto G, Molnar G, Geszti O, Guczi L (2006) Catal Comm 7:64

    Article  CAS  Google Scholar 

  11. King DM, Du XH, Cavanagh AS, Weimer A (2008) Nanotechnol 19:445401

    Article  Google Scholar 

  12. King DM, Liang XH, Carney CS, Hakim LF, Li P, Weimer AW (2008) Adv Funct Mater 18:607

    Article  CAS  Google Scholar 

  13. King DM, Liang XH, Zhou Y, Carney CS, Hakim LF, Li P, Weimer AW (2008) Powder Technol 183:356

    Article  CAS  Google Scholar 

  14. Liang XH, King DM, Li P, Weimer AW (2009) J Am Ceram Soc 92:649

    Article  CAS  Google Scholar 

  15. Wang SG, Cao DB, Li YW, Wang JG, Jiao HJ (2006) J Phys Chem B 110:9976

    Article  CAS  Google Scholar 

  16. Qu YQ, Sutherland AM, Guo T (2008) Energy Fuels 22:2183

    Article  CAS  Google Scholar 

  17. Ross JRH (2005) Catal Today 100:151

    Article  CAS  Google Scholar 

  18. Ashrafi M, Pfeifer C, Proll T, Hofbauer H (2008) Energy Fuels 22(6):4190–4195

    Article  CAS  Google Scholar 

  19. Zhang SB, Wang JK, Liu HT, Wang XL (2008) Catal Comm 9:995

    Article  CAS  Google Scholar 

  20. Batiot-Dupeyrat C, Valderrama G, Meneses A, Martinez F, Barrault J, Tatibouet JM (2003) Appl Catal A 248:143

    Article  CAS  Google Scholar 

  21. Pereniguez R, Gonzalez-DelaCruz VM, Holgado JP, Caballero A (2010) Appl Catal B 93:346

    Article  CAS  Google Scholar 

  22. Kim JH, Suh DJ, Park TJ, Kim KL (2000) Appl Catal A 197:191

    Article  CAS  Google Scholar 

  23. Rezaei M, Alavi SM, Sahebdelfar S, Yan ZF (2006) Energy Fuels 20:923

    Article  CAS  Google Scholar 

  24. Garcia-Dieguez M, Pieta IS, Herrera MC, Larrubia MA, Alemany LJ (2010) J Catal 270:136

    Article  CAS  Google Scholar 

  25. Damyanova S, Pawelec B, Arishtirova K, Fierro JLG, Sener C, Dogu T (2009) Appl Catal B 92:250

    Article  CAS  Google Scholar 

  26. King JS, Wittstock A, Biener J, Kucheyev SO, Wang YM, Baumann TF, Giri SK, Hamza AV, Baeumer M, Bent SF (2008) Nano Lett 8:2405

    Article  CAS  Google Scholar 

  27. Luo Y, Kim KD, Seo HO, Kim MJ, Kim YD, unpublished results

  28. Oku M, Wagatsuma K, Kohiki S (1999) Phys Chem Chem Phys 1:5327

    Article  CAS  Google Scholar 

  29. Lopez-Salido I, Lim DC, Dietsche R, Bertram N, Kim YD (2006) J Phys Chem B 110:1128

    Article  CAS  Google Scholar 

  30. Lopez-Salido I, Lim DC, Kim YD (2005) Surf Sci 588:6

    Article  CAS  Google Scholar 

  31. Hovel H, Barke I, Boyen HG, Ziemann P, Garnier MG, Oelhafen P (2004) Phys Rev B 70:045424

    Article  Google Scholar 

  32. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc. Minnesota

Download references

Acknowledgement

This research was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Dok Kim.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 308 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D.W., Kim, KD., Seo, H.O. et al. TiO2/Ni Inverse-Catalysts Prepared by Atomic Layer Deposition (ALD). Catal Lett 141, 854–859 (2011). https://doi.org/10.1007/s10562-011-0601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0601-7

Keywords

Navigation