Skip to main content

Advertisement

Log in

Pd-Decorated CNT-Promoted Pd-Ga2O3 Catalyst for Hydrogenation of CO2 to Methanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A type of Pd-decorated CNT-promoted Pd-Ga catalysts was developed. The catalyst displayed excellent performance for CO2 hydrogenation to methanol. Under the reaction conditions of 5.0 MPa and 523 K, the observed specific reaction rate of CO2 hydrogenation reached 2.23 μmol s−1 (m2-Pd)−1, which was 1.39 times that (1.60 μmol s−1 (m2-Pd)−1) of the non-promoted Pd-Ga host. The addition of a small amount of the Pd-decorated CNTs to the Pd-Ga host catalyst did not cause a marked change in the E a of the CO2 hydrogenation reaction. The function of the CNT-promoter was mainly in increasing the molar percentage of the catalytically active Pd0-species in the total Pd-amount at the surface of the functioning catalyst, and in improving the capability of the catalyst to adsorb and activate H2 (one of the reactants). Compared to the “Herringbone-type” CNTs, the “Parallel-type” CNTs possess less active surface (with less dangling bonds), and thus, lower capacity for adsorbing H2, resulting in the rather limited promoter effect.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amenomiya Y, Emesh AIT, Oliver KW, Pleizier G (1988) In: Phillips MJ, Ternan M (eds) Proc 9th Int Congr on Catal, vol. 2, pp 634–641

  2. Kanoun N, Astier MP, Pajonk GM (1992) Catal Lett 15(3):231–235

    Article  CAS  Google Scholar 

  3. Frohlich C, Koppel RA, Baiker A, Kilo M, Wokaun A (1993) Appl Catal A Gen 106(2):275–293

    Article  Google Scholar 

  4. Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Appl Catal A Gen 138(2):311–318

    Article  CAS  Google Scholar 

  5. Sahibzada M, Chadwick D, Metcalfe IS (1996) Catal Today 29(1–4):367–372

    Article  CAS  Google Scholar 

  6. Melian-Cabrera I, Lopez-Granados M, Terreros P, Fierro JLG (1998) Catal Today 45(1–4):251–256

    Article  CAS  Google Scholar 

  7. Toyir J, Piscina PR, Fierro JLG, Homs N (2001) Appl Catal B Environ 29(3):207–215

    Article  CAS  Google Scholar 

  8. Fan L, Fujimoto K (1994) J Catal 150(1):217–220

    Article  CAS  Google Scholar 

  9. Fujitani T, Saito M, Kanai Y, Watanabe T, Nakamura J, Uchijima T (1995) Appl Catal A Gen 125(2):L199–L202

    Article  CAS  Google Scholar 

  10. Iwasa N, Suzuki H, Terashita M, Arai M, Takezawa N (2004) Catal Lett 96(1–2):75–78

    Article  CAS  Google Scholar 

  11. Collins SE, Baltanas MA, Bonivardi AL (2004) J Catal 226(2):410–421

    Article  CAS  Google Scholar 

  12. Liang XL, Dong X, Lin GD, Zhang HB (2009) Appl Catal B Environ 88(3–4):315–322

    Article  CAS  Google Scholar 

  13. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  14. Serp P, Corrias M, Kalck P (2003) Appl Catal A Gen 253(2):337–358

    Article  CAS  Google Scholar 

  15. Zhang HB, Lin GD, Yuan YZ (2005) Curr Top Catal 4:1–21

    CAS  Google Scholar 

  16. Zhang HB, Liang XL, Dong X, Li HY, Lin GD (2009) Catal Surv Asia 13(1):41–58

    Article  CAS  Google Scholar 

  17. Pan XL, Fan ZL, Chen W, Ding YJ, Luo HY, Bao XH (2007) Nat Mater 6:507–511

    Article  CAS  Google Scholar 

  18. Ma CH, Li HY, Lin GD, Zhang HB (2010) Appl Catal B Environ 100(1–2):245–253

    Article  CAS  Google Scholar 

  19. Kong H, Zhou M, Lin GD, Zhang HB (2010) Catal Lett 135(1):83–90

    Article  CAS  Google Scholar 

  20. Chen P, Zhang HB, Lin GD, Hong Q, Tsai KR (1997) Carbon 35(10–11):1495–1501

    Article  CAS  Google Scholar 

  21. Chen P, Zhang HB, Lin GD, Tsai KR (1998) Chem J Chin Univ 19(5):765–769

    CAS  Google Scholar 

  22. Zhang H-B, Lin G-D, Zhou Z-H, Dong X, Chen T (2002) Carbon 40(13):2429–2436

    Article  CAS  Google Scholar 

  23. Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corporation, Norcross, GA, USA, p 260

  24. XRD data bank attached to X’Pert PRO X-ray Diffractometer, PANalytical, The Netherlands (2003)

  25. Penner S, Lorenz H, Jochum W, Stoger-Pollach M, Wang D, Rameshan C, Klotzer B (2009) Appl Catal A Gen 358(2):193–202

    Article  CAS  Google Scholar 

  26. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy—a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Inc., Eden Prairie

    Google Scholar 

  27. Ishikawa Y, Austin LG, Brown DE, Walker PL Jr (1975) In: Walker PL Jr, Thrower PA (eds) Chemistry and physics of carbon, vol 12. Marcel Dekker, New York, p 39

    Google Scholar 

  28. Zhou ZH, Wu XM, Wang Y, Lin GD, Zhang HB (2002) Acta Phys Chem Sin 18(8):692–698

    CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by “973” project (2011CBA00508), NSFC project (20923004) and Fujian Provincial Key Scientific projects (2009HZ0002-1) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, H., Li, HY., Lin, GD. et al. Pd-Decorated CNT-Promoted Pd-Ga2O3 Catalyst for Hydrogenation of CO2 to Methanol. Catal Lett 141, 886–894 (2011). https://doi.org/10.1007/s10562-011-0584-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0584-4

Keywords

Navigation