Skip to main content

Advertisement

Log in

Solid-State Synthesis of Pd/In2O3 Catalysts for CO2 Hydrogenation to Methanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Pd/In2O3 catalysts with highly dispersed Pd species are prepared via a solid-state routine based on room-temperature grinding. Pd species can serve as the active sites for H2 dissociation, thereby providing abundant H adatoms for CO2 hydrogenation. The addition of Pd significantly improves the catalytic activity of In2O3 for CO2 hydrogenation to methanol. In particular, 2 wt% Pd/In2O3 achieves a methanol space–time yield of 331.7 gMeOH kgcat−1 h−1 at 280 ℃, 3 MPa, and 21,000 mL h−1 gcat−1, 3.6 times that of pure In2O3.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig.5

Similar content being viewed by others

References

  1. Geden O (2018) Politically informed advice for climate action. Nat Geosci 11:380–383

    Article  CAS  Google Scholar 

  2. Atsbha TA, Yoon T, Seongho P, Lee CJ (2021) A review on the catalytic conversion of CO2 using H2 for synthesis of CO2, methanol, and hydrocarbons. J CO2 Util. https://doi.org/10.1016/j.jcou.2020.101413

    Article  Google Scholar 

  3. Vu TTN, Desgagnés A, Iliuta MC (2021) Efficient approaches to overcome challenges in material development for conventional and intensified CO2 catalytic hydrogenation to CO, methanol, and DME. Appl Catal A 617:118119

    Article  CAS  Google Scholar 

  4. Temvuttirojn C, Chuasomboon N, Numpilai T, Faungnawakij K, Chareonpanich M, Limtrakul J, Witoon T (2019) Development of SO42-ZrO2 acid catalysts admixed with a CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to dimethyl ether. Fuel 241:695–703

    Article  CAS  Google Scholar 

  5. Chen J, Wang X, Wu D, Zhang J, Ma Q, Gao X, Lai X, Xia H, Fan S, Zhao T-S (2019) Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: strategy for product distribution. Fuel 239:44–52

    Article  CAS  Google Scholar 

  6. Zhang X, Zhang A, Jiang X, Zhu J, Liu J, Li J, Zhang G, Song C, Guo X (2019) Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst. J CO2 Util 29:140–145

    Article  CAS  Google Scholar 

  7. Alvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117:9804–9838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dasireddy VDBC, Likozar B (2019) The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity. Renew Energy 140:452–460

    Article  CAS  Google Scholar 

  9. Fichtl MB, Schlereth D, Jacobsen N, Kasatkin I, Schumann J, Behrens M, Schlögl R, Hinrichsen O (2015) Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts. Appl Catal A 502:262–270

    Article  CAS  Google Scholar 

  10. Sun K, Fan Z, Ye J, Yan J, Ge Q, Li Y, He W, Yang W, Liu C-J (2015) Hydrogenation of CO2 to methanol over In2O3 catalyst. J CO2 Util 12:1–6

    Article  Google Scholar 

  11. Ye J, Liu C, Ge Q (2012) DFT Study of CO2 adsorption and hydrogenation on the In2O3 surface. J Phys Chem C 116:7817–7825

    Article  CAS  Google Scholar 

  12. Ye J, Liu C, Mei D, Ge Q (2013) Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study. ACS Catal 3:1296–1306

    Article  CAS  Google Scholar 

  13. Martin O, Martin AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferre D, Perez-Ramirez J (2016) Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew Chem Int Ed 55:6261–6265

    Article  CAS  Google Scholar 

  14. Numpilai T, Wattanakit C, Chareonpanich M, Limtrakul J, Witoon T (2019) Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34. Energy Convers Manag 180:511–523

    Article  CAS  Google Scholar 

  15. Zhou Z, Qin B, Li S, Sun Y (2020) A DFT-based microkinetic study on methanol synthesis from CO2 hydrogenation over the In2O3 catalyst. Phys Chem Chem Phys 23:1888–1895

    Article  Google Scholar 

  16. Rui N, Wang Z, Sun K, Ye J, Ge Q, Liu C (2017) CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy. Appl Catal B 218:488–497

    Article  CAS  Google Scholar 

  17. Cai Z, Dai J, Li W, Tan KB, Huang Z, Zhan G, Huang J, Li Q (2020) Pd supported on MIL-68(In)-derived In2O3 nanotubes as superior catalysts to boost CO2 hydrogenation to methanol. ACS Catal 10:13275–13289

    Article  CAS  Google Scholar 

  18. Frei MS, Mondelli C, Garcia-Muelas R, Kley KS, Puertolas B, Lopez N, Safonova OV, Stewart JA, Curulla Ferre D, Perez-Ramirez J (2019) Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nat Commun 10:3377

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han Z, Tang C, Wang J, Li L, Li C (2020) Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation. J Catal 394:236–244

    Article  Google Scholar 

  20. Wang J, Sun K, Jia X, Liu C (2020) CO2 hydrogenation to methanol over Rh/In2O3 catalyst. Catal Today 365:341–347

    Article  Google Scholar 

  21. Frei E, Schaadt A, Ludwig T, Hillebrecht H, Krossing I (2014) The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO2 catalyst for methanol synthesis from H2 and CO2. ChemCatChem 6:1721–1730

    Article  CAS  Google Scholar 

  22. Baltes C, Vukojevic S, Schuth F (2008) Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J Catal 258:334–344

    Article  CAS  Google Scholar 

  23. Zhao J, Shu Y, Zhang P (2019) Solid-state CTAB-assisted synthesis of mesoporous Fe3O4 and Au@Fe3O4 by mechanochemistry. Chin J Catal 40:1078–1084

    Article  CAS  Google Scholar 

  24. Wu W, Xie K, Sun D, Li X, Fang F (2017) CuO/ZnO/Al2O3 catalyst prepared by mechanical-force-driven solid-state ion exchange and its excellent catalytic activity under internal cooling condition. Ind Eng Chem Res 56:8216–8223

    Article  CAS  Google Scholar 

  25. Xiao W, Yang S, Zhang P, Li P, Wu P, Li M, Chen N, Jie K, Huang C, Zhang N, Dai S (2018) Facile synthesis of highly porous metal oxides by mechanochemical nanocasting. Chem Mater 30:2924–2929

    Article  CAS  Google Scholar 

  26. Xiong H, Zhou H, Sun G, Liu Z, Zhang L, Zhang L, Du F, Qiao ZA, Dai S (2020) Solvent-free self-assembly for scalable preparation of highly crystalline mesoporous metal oxides. Angew Chem Int Ed 59:11053–11060

    Article  CAS  Google Scholar 

  27. Chen H, Lin W, Zhang Z, Jie K, Mullins DR, Sang X, Yang S-Z, Jafta CJ, Bridges CA, Hu X, Unocic RR, Fu J, Zhang P, Dai S (2019) Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Mater Lett 1:83–88

    Article  CAS  Google Scholar 

  28. Guo X, Mao D, Lu G, Wang S, Wu G (2011) CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction. Catal Commun 12:1095–1098

    Article  CAS  Google Scholar 

  29. Frei MS, Capdevila-Cortada M, García-Muelas R, Mondelli C, López N, Stewart JA, Curulla Ferré D, Pérez-Ramírez J (2018) Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide. J Catal 361:313–321

    Article  CAS  Google Scholar 

  30. Sangeetha P, Shanthi K, Rama Rao KS, Viswanathan B, Selvam P (2009) Hydrogenation of nitrobenzene over palladium-supported catalysts-effect of support. Appl Catal A 353:160–165

    Article  CAS  Google Scholar 

  31. Yue L, He C, Hao Z, Wang S, Wang H (2014) Effects of metal and acidic sites on the reaction by-products of butyl acetate oxidation over palladium-based catalysts. J Environ Sci 26:702–707

    Article  CAS  Google Scholar 

  32. Neumann M, Teschner D, Knop-Gericke A, Reschetilowski W, Armbrüster M (2016) Controlled synthesis and catalytic properties of supported In-Pd intermetallic compounds. J Catal 340:49–59

    Article  CAS  Google Scholar 

  33. Dostagir NHMD, Thompson C, Kobayashi H, Karim AM, Fukuoka A, Shrotri A (2020) Rh promoted In2O3 as a highly active catalyst for CO2 hydrogenation to methanol. Catal Sci Technol 10:8196–8202

    Article  CAS  Google Scholar 

  34. Jia X, Sun K, Wang J, Shen C, Liu C-J (2020) Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst. J Energy Chem 50:409–415

    Article  Google Scholar 

  35. Snider JL, Streibel V, Hubert MA, Choksi TS, Valle E, Upham DC, Schumann J, Duyar MS, Gallo A, Abild-Pedersen F, Jaramillo TF (2019) Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol. ACS Catal 9:3399–3412

    Article  CAS  Google Scholar 

  36. Zhang S, Song P, Yan H, Wang Q (2016) Self-assembled hierarchical Au-loaded In2O3 hollow microspheres with superior ethanol sensing properties. Sens Actuators B 231:245–255

    Article  CAS  Google Scholar 

  37. García-Trenco A, Regoutz A, White ER, Payne DJ, Shaffer MSP, Williams CK (2018) PdIn intermetallic nanoparticles for the hydrogenation of CO2 to Methanol. Appl Catal B 220:9–18

    Article  Google Scholar 

  38. Wang J, Lu S, Li J, Li C (2015) A remarkable difference in CO2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes. Chem Commun 51:17615–17618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 21878096, 2197080732), and the National Key Research and Development Program of China (Grant No. 2018YFB0604602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youqing Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, G., Wu, Y., Wu, S. et al. Solid-State Synthesis of Pd/In2O3 Catalysts for CO2 Hydrogenation to Methanol. Catal Lett 153, 903–910 (2023). https://doi.org/10.1007/s10562-022-04030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04030-2

Keywords

Navigation