Skip to main content
Log in

PEG Modification Effect of Silica on the Suzuki–Miyaura Coupling Reaction Using Silica-immobilized Palladium Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The Pd phosphine complex catalysts immobilized onto polyethylene glycol (PEG)-modified silica were prepared in order to clarify the effect of the PEG modification on the Suzuki–Miyaura coupling reaction in organic solvents. For the reaction of ethyl p-bromobenzoate and phenylboronic acid in the presence of potassium carbonate in toluene, the PEG-modified silica-immobilized Pd catalysts exhibited much higher activities than the catalysts without PEG modification.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Vos DED, Dams M, Sels BF, Jacobs PA (2002) Chem Rev 102:3615–3640

    Article  Google Scholar 

  2. Jas G, Kirschning A (2003) Chem Eur J 9:5708–5723

    Article  CAS  Google Scholar 

  3. Corma A, Garcia H (2006) Adv Synth Catal 348:1391–1412

    Article  CAS  Google Scholar 

  4. Minakata S, Komatsu M (2009) Chem Rev 109:711–724

    Article  CAS  Google Scholar 

  5. Kang R, Ouyang X, Han J, Zhen X (2001) J Mol Catal A 175:153–159

    Article  CAS  Google Scholar 

  6. Kidambi S, Dai J, Li J, Bruening ML (2004) J Am Chem Soc 126:2658–2659

    Article  CAS  Google Scholar 

  7. Hou Z, Theyssen N, Leitner W (2007) Green Chem 9:127–132

    Article  CAS  Google Scholar 

  8. Drelinkiewicz A, Waksmundzka-Gora A, Sobczak JW, Stejskal J (2007) Appl Catal A 333:219–228

    Article  CAS  Google Scholar 

  9. Zhou X, Wu T, Hu B, Jiang T, Han B (2009) J Mol Catal A 306:143–148

    Article  CAS  Google Scholar 

  10. Sin E, Yi SS, Lee YS (2010) J Mol Catal A 315:99–104

    Article  CAS  Google Scholar 

  11. Yang Q, Ma S, Li J, Xiao F, Xiong H (2006) Chem Commun 23:2495–2497

    Article  Google Scholar 

  12. Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  13. Bellina F, Carpita A, Rossi R (2004) Synthesis 15:2419–2440

    Google Scholar 

  14. Nicolaou KC, Bulger PG, Sarlah D (2005) Angew Chem Int Ed 44:4442–4489

    Article  CAS  Google Scholar 

  15. Phan NTS, Sluys MVD, Jones CW (2006) Adv Synth Catal 348:609–679

    Article  CAS  Google Scholar 

  16. Yin L, Liebscher J (2007) Chem Rev 107:133–173

    Article  CAS  Google Scholar 

  17. Lamblin M, Nassar-Hardy L, Hierso JC, Fouquet E, Felpin FX (2010) Adv Synth Catal 352:33–79

    Article  CAS  Google Scholar 

  18. Horniakova J, Raja T, Kubota Y, Sugi Y (2004) J Mol Catal A 217:73–80

    Article  CAS  Google Scholar 

  19. Shimizu K, Koizumi S, Hatamachi T, Yoshida H, Komai S, Kodama T, Kitayama Y (2004) J Catal 228:141–151

    Article  CAS  Google Scholar 

  20. Webb JD, MacQuarrie S, McEleney K, Crudden CM (2007) J Catal 252:97–109

    Article  CAS  Google Scholar 

  21. Dhara K, Sarkar K, Srimani D, Saha SK, Chattopadhyay P, Bhaumik A (2010) Dalton Trans 39:6395–6402

    Article  CAS  Google Scholar 

  22. Uozumi Y, Nakai Y (2002) Org Lett 4:2997–3000

    Article  CAS  Google Scholar 

  23. Uozumi Y, Danjo H, Hayashi T (1999) J Org Chem 64:3384–3388

    Article  CAS  Google Scholar 

  24. Kim JW, Kim JH, Lee DH, Lee YS (2006) Tetrahedron Lett 47:4745–4748

    Article  CAS  Google Scholar 

  25. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  26. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  27. Okano T, Kobayashi T, Konishi H, Kiji J (1982) Bull Chem Soc Jpn 55:2675–2676

    Article  CAS  Google Scholar 

  28. Schantz S (1997) Macromolecules 30:1419–1425

    Article  CAS  Google Scholar 

  29. Markovic E, Ginic-Markovic M, Clarke S, Matisons J, Hussain M, Simon GP (2007) Macromolecules 40:2694–2701

    Article  CAS  Google Scholar 

  30. Nelson JH, Rahn JA, Bearden WH (1987) Inorg Chem 26:2192–2193

    Article  CAS  Google Scholar 

  31. Kang C, Huang J, He W, Zhang F (2010) J Organomet Chem 695:120–127

    Article  CAS  Google Scholar 

  32. Amatore C, Jutand A (1999) J Organometallic Chem 576:254–278

    Article  CAS  Google Scholar 

  33. Whitcombe NJ, Hii KK, Gibson SE (2001) Tetrahedron 57:7449–7476

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Project of “Development of Microspace and Nanospace Reaction Environment Technology for Functional Materials” of New Energy and Industrial Technology Development Organization (NEDO), Japan. The authors thank Ms. Michiyo Yoshinaga for assistance with catalytic tests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shun-ya Onozawa or Hiroyuki Yasuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onozawa, Sy., Fukaya, N., Saitou, K. et al. PEG Modification Effect of Silica on the Suzuki–Miyaura Coupling Reaction Using Silica-immobilized Palladium Catalysts. Catal Lett 141, 866–871 (2011). https://doi.org/10.1007/s10562-011-0583-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0583-5

Keywords

Navigation