Skip to main content
Log in

Structural and Activity Investigation into Al3+, La3+ and Ce3+ Addition to the Phosphomolybdate Heteropolyanion for Isobutane Selective Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Twelve phosphomolybdate compounds were synthesized via cationic exchange and were of the form: M x H3–3x [PMo12O40] (M = Al, La or Ce; 0 ≤ x ≤ 1). These compounds were analyzed by XRD and adsorption isotherm. Aluminum addition causes a primitive cubic phase, while lanthanum and cerium yield body-centered structures. La and Ce addition reduces surface area of phosphomolybdate structure. Temperature-programmed experiments for the selective oxidation of isobutane yielded methacrolein, 3-methyl-2-oxetanone (lactone), acetic acid (not with aluminous compounds), propene (only with aluminous compounds), carbon dioxide and water. The preference for propene rather than acetic acid formation with Al3+ may be due to the smaller cation size, or primitive cubic structure. These products form via two distinct reaction processes, labeled categories 1 and 2. Category 1 formation is associated with isobutane forming products on the surface, but reaction rate determined by bulk migration of charged particles. Category 2 formation is concerned with isobutane penetrating deep within the bulk of the substrate and forming products which subsequently desorb in a series of bell-shaped humps. Methacrolein forms via both category 1 and 2, whilst all other products form via category 2 exclusively. Kinetic analysis showed apparent activation barriers for category 1 methacrolein formation range from 67 ± 2 kJ mol−1 to >350 kJ mol−1, and occur in groups with small, medium and large activation barriers. The addition of +3 metal cations to the phosphomolybdate anion increase thermal stability, significantly decreasing deactivation; IR spectroscopy shows that the Keggin structure remains intact during temperature-programmed experiments with the Al, La and Ce salts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WP Coverage of Methyl Methacrylate (MMA), SRI Consulting, http://www.sriconsulting.com/WP/Public/Reports/mma/, 2010

  2. Deusser LM, Petzoldt JC, Gaube JW, Hibst H (1998) Ind Eng Chem Res 37:3230–3236

    Article  CAS  Google Scholar 

  3. Nagai K (2001) Appl Catal A 221:367–377

    Article  CAS  Google Scholar 

  4. Langpape M, Millet JMM, Ozkan US, Delichère P (1999) J Catal 182:148–155

    Article  CAS  Google Scholar 

  5. Min J, Mizuno N (2001) Catal Today 71:89–96

    Article  CAS  Google Scholar 

  6. Li W, Ueda W (1997) Catal Lett 46:261–265

    Article  CAS  Google Scholar 

  7. Jalowiecki-Duhamel L, Monnier A, Barbaux Y, Hecquet G (1996) Catal Today 32:237–241

    Article  CAS  Google Scholar 

  8. Paul JS, Jacobs PA, Weiss PAW, Maier WF (2004) Appl Catal A 265:185–193

    Article  CAS  Google Scholar 

  9. Cavani F, Mezzogori R, Pigamo A, Trifiro F, Etienne E (2001) Catal Today 71:97–110

    Article  CAS  Google Scholar 

  10. Guan J, Wu S, Jia M, Huang J, Jing S, Xu H, Wang Z, Zhu W, Xing H, Wang H, Kan Q (2007) Catal Commun 8:1219–1223

    Article  CAS  Google Scholar 

  11. Sultan M, Paul S, Fournier M, Vanhove D (2004) Appl Catal A 259:141–152

    Article  CAS  Google Scholar 

  12. Shishido T, Inoue A, Konishi T, Matsuura I, Takehira K (2000) Catal Lett 68:215–221

    Article  CAS  Google Scholar 

  13. Hu J, Burns RC, Guerbois JP (2000) J Mol Catal A-Chemical 152:141–155

    Article  CAS  Google Scholar 

  14. Akimoto M, Tsuchida Y, Sato K, Echigoya E (1981) J Catal 72:93–94

    Article  Google Scholar 

  15. Stytsenko VD, Lee WH, Lee JW (2001) Kinet Catal 42:212–216

    Article  CAS  Google Scholar 

  16. Marosi L, Cox G, Tenten A, Hibst H (2000) Catal Lett 67:193–196

    Article  CAS  Google Scholar 

  17. Marosi L, Cox G, Tenten A, Hibst H (2000) J Catal 194:140–145

    Article  CAS  Google Scholar 

  18. Konishi Y, Sakata K, Misono M, Yoneda Y (1982) J Catal 77:169–179

    Article  CAS  Google Scholar 

  19. Filimonov IN, Lee W (2009) Catal Lett 131:70–75

    Article  CAS  Google Scholar 

  20. Bohnke H, Gaube J, Petzoldt J (2006) Ind Eng Chem Prod Res Dev 45:8794–8800

    Google Scholar 

  21. Potolovskii LA, Kukui NM, Fufaev AV, Bushueva TA, Vasil’eva VN (1978) Chem Tech Fuels Oils 14:492–494

    Article  Google Scholar 

  22. Dias JA, Dias SCL, Kob NE, J Chem Soc Dalton Trans (2001) 228–231

  23. Misono M (1990) Stud Surf Sci Catal 54:13–31

    Article  Google Scholar 

  24. Misono M, Mizuno N, Mori H, Lee KY, Jiao J (1991) In: Grasselli RK, Sleight AW (eds) Structure-activity and selectivity relationships in heterogeneous catalysis. Elsevier Science Publishers B.V, Amsterdam, pp 87–97

    Chapter  Google Scholar 

  25. Misono M (2001) Chemical communications 13:1141–1152

    Article  Google Scholar 

  26. Furuta M, Sakata K, Misono M, Yoneda Y (1979) Chem Lett 8:31–34

    Article  Google Scholar 

  27. Langpape M, Millet JMM, Ozkan US, Boudeulle M (1999) J Catal 181:80–90

    Article  CAS  Google Scholar 

  28. Etienne E, Cavani F, Mezzogori R, Trifirò F, Calestani G, Gengembre L, Guelton M (2003) Appl Catal A 256:275–290

    Article  CAS  Google Scholar 

  29. McGarvey GB (1988) J Colloid Interf Sci 125:51–60

    Article  CAS  Google Scholar 

  30. McMonagle JB, Moffat JB (1984) J Colloid Interf Sci 101:479–488

    Article  CAS  Google Scholar 

  31. Mizuno N, Suh DJ, Han W, Kudo T (1996) J Mol Catal A-Chemical 114:309–317

    Article  CAS  Google Scholar 

  32. Rocchiccioli-Deltcheff C, Aouissi A, Bettahar MM, Launay S, Fournier M (1996) J Catal 164:16–27

    Article  CAS  Google Scholar 

  33. Silviani E, Burns RC (2004) J Mol Catal A-Chemical 219:327–342

    Article  CAS  Google Scholar 

  34. Taylor DB, McMonagle JB, Moffat JB (1985) J Colloid Interf Sci 108:278–284

    Article  CAS  Google Scholar 

  35. Wienold J, Timpe O, Ressler T (2003) Chem Eur J 9:6007–6017

    Article  CAS  Google Scholar 

  36. Black JB, Clayden NJ, Gai PL, Scott JD, Serwicka EM, Goodenough JB (1987) J Catal 106:1–15

    Article  CAS  Google Scholar 

  37. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer-Verlag, Berlin

    Google Scholar 

  38. Moffat JB (2001) Metal-oxygen clusters. Kluwer Academic, New York

    Google Scholar 

  39. Komaya T, Misono M (1983) Chem Lett 12:1177–1180

    Article  Google Scholar 

  40. Okuhara T, Kasai A, Hayakawa N, Misono M, Yoneda Y, Chem Lett (1981) 391–394

  41. Okuhara T, Kasai A, Hayakawa N, Yoneda Y, Misono M (1983) J Catal 83:121–130

    Article  CAS  Google Scholar 

  42. Mizuno N, Watanabe T, Mori H, Misono M (1990) J Catal 123:157–163

    Article  CAS  Google Scholar 

  43. Mars P, van Krevelen DW (1954) Chem Eng Sci 3(Special Supplement): 41–59

  44. Kendell SM, Brown TC, Burns RC (2008) Catal Today 131:526–532

    Article  CAS  Google Scholar 

  45. Chang TH (1995) J Chem Soc Faraday Trans 91:375–379

    Article  CAS  Google Scholar 

  46. Fournier M, Feumi-Jantou C, Rabia C, Hervé G, Launay S (1992) J Mater Chem 2:971–978

    Article  CAS  Google Scholar 

  47. West SF, Audrieth LF (1955) J Phys Chem 59:1069–1072

    Article  CAS  Google Scholar 

  48. Silviani E (2003) PhD thesis, University of Newcastle, Australia

  49. Eguchi K, Toyozawa Y, Furuta K, Yamazoe N, Seiyama T (1981) Chem Lett 1253–1256

  50. Eguchi K, Yamazoe N, Seiyama T (1981) Nippon Kagaku Kaishi 336

  51. Kendell SM, Brown TC (2010) React Kinet Mech Catl 99:251–268

    CAS  Google Scholar 

  52. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  53. Zdravkov BD, Cermak JJ, Sefara M, Janku J (2007) Cent Eur J Chem 5:385–395

    Article  CAS  Google Scholar 

  54. Nguyen TH, Ball WP (2006) Environ Sci Technol 40:2958–2964

    Article  CAS  Google Scholar 

  55. Paulsen PD, Moore BC, Cannon FS (1999) Carbon 37:1843–1853

    Article  CAS  Google Scholar 

  56. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  57. Langmuir I (1916) J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  58. Occelli ML, Olivier JP, Perdigon-Melon JA, Auroux A (2002) Langmuir 18:9816–9823

    Article  CAS  Google Scholar 

  59. Occelli ML, Olivier JP, Petre A, Auroux A (2003) J Phys Chem B 107:4128–4136

    Article  CAS  Google Scholar 

  60. Balbuena PB, Gubbins KE (1992) Fluid Phase Equilib 76:21–35

    Article  CAS  Google Scholar 

  61. Kluson P, Scaife SJ (2002) J Porous Mater 9:115–129

    Article  CAS  Google Scholar 

  62. Olivier JP (1995) J Porous Mater 2:9–17

    Article  CAS  Google Scholar 

  63. Shannon RD (1976) Acta Crystallogr A 32:751

    Article  Google Scholar 

  64. Hu J, Burns RC (2000) J Catal 195:360–375

    Article  CAS  Google Scholar 

  65. Nguyen NH, Kendell S, Le Minh C, Brown T (2010) Catal Lett 136:28–34

    Article  CAS  Google Scholar 

  66. Hunger B, Klepel O, Kirschhock C, Heuchel M, Toufar H, Fuess H (1999) Langmuir 15:5937–5941

    Article  CAS  Google Scholar 

  67. Qian EW, Horio T, Sutrisna IP (2009) Energ Fuels 23:1583–1590

    Article  CAS  Google Scholar 

  68. Beta IA, Hunger B, Böhlig H (2001) J Therm Anal Calorim 64:1191–1199

    Article  CAS  Google Scholar 

  69. Niwa M, Katada N (1997) Catal Surv Jpn 1:215–226

    Article  CAS  Google Scholar 

  70. Kendell S, Alston A, Brown T (2009) Chem Prod Process Model 4:5

    Google Scholar 

  71. Le Minh C, Brown TC (2006) Appl Catal A 310:145–154

    Article  Google Scholar 

  72. Sun Y, Brown TC (2000) J Catal 194:301–308

    Article  Google Scholar 

  73. Savitzky A, Golay M (1964) Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  74. Bligaard T, Honkala K, Logadottir A, Norskov JK (2003) J Phys Chem B 107:9325–9331

    Article  CAS  Google Scholar 

  75. Conner WC Jr (1983) J Catal 84:273–274

    Article  CAS  Google Scholar 

  76. Galwey AK, Mortimer M (2006) Int J Chem Kinet 38:464–473

    Article  CAS  Google Scholar 

  77. Larsson R (1989) J Mol Catal 55:70–83

    Article  CAS  Google Scholar 

  78. Linert W (1994) Chem Soc Rev 23:429–438

    Article  CAS  Google Scholar 

  79. Rooney JJ (1998) Catal Lett 50:15

    Article  CAS  Google Scholar 

  80. Schwab GM (1983) J Catal 84:1–7

    Article  CAS  Google Scholar 

  81. Linert W, Jameson RF (1989) Chem Soc Rev 18:477–505

    Article  CAS  Google Scholar 

  82. Rooney JJ (1995) J Mol Catal 96:L1–L3

    Article  CAS  Google Scholar 

  83. Larsson R (1998) Appl Catal A 167:N12–N13

    CAS  Google Scholar 

  84. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian, Inc., Pittsburgh, PA

  85. Dennington R II, Keith T, Millam J (2007) Semichem, Inc., Shawnee Mission, KS

  86. McGarvey GB, Moffat JB (1992) Catal Lett 16:173–180

    Article  CAS  Google Scholar 

  87. Rocchiccioli-Deltcheff C, Fournier M, Franck R, Thouvenot R (1983) Inorg Chem 22:207–216

    Article  CAS  Google Scholar 

  88. Misono M (1987) Catal Rev Sci Eng 29:269–321

    Article  CAS  Google Scholar 

  89. Mizuno N, Tateishi M, Iwamoto M (1996) J Catal 163:87–94

    Article  CAS  Google Scholar 

  90. Misono M (1992) Catal Lett 12:63–72

    Article  CAS  Google Scholar 

  91. Dimitratos N, Vedrine J (2006) Catal Commun 7:811–818

    Article  CAS  Google Scholar 

  92. Baba T, Sakai J, Watanabe H, Ono Y (1982) Bull Chem Soc Jpn 55:2555–2559

    Article  CAS  Google Scholar 

  93. Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113–252

    Article  CAS  Google Scholar 

  94. Nakamura O, Kodama T, Ogino I, Miyake Y (1979) Chem Lett 1:17

    Article  Google Scholar 

  95. Pandey K, Lakshmi N (1999) J Mater Sci 34:1749–1752

    Article  CAS  Google Scholar 

  96. Hardwick A, Dickens PG, Slade RCT (1984) Solid State Ionics 13:345–350

    Article  CAS  Google Scholar 

  97. Mioc UB, Petkovic M, Davidovic M, Peric M, Abdul-Redah T (2008) J Mol Struct 885:131–138

    Article  CAS  Google Scholar 

  98. Parent MA, Moffat JB (1996) Langmuir 12:3733–3739

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Shane, Nick and Amy are appreciative of the Australian Postgraduate Award stipend. The authors are also thankful of the generous research funding supplied by the University of New England, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane M. Kendell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendell, S.M., Alston, AS., Ballam, N.J. et al. Structural and Activity Investigation into Al3+, La3+ and Ce3+ Addition to the Phosphomolybdate Heteropolyanion for Isobutane Selective Oxidation. Catal Lett 141, 374–390 (2011). https://doi.org/10.1007/s10562-010-0514-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0514-x

Keywords

Navigation