Skip to main content
Log in

Mechanistic Investigation into the Rearrangement of Lactone into Methacrylic Acid over Phosphomolybdic Acid Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The rearrangement of 3-methyl-2-oxetanone (lactone) into methacrylic acid has been explored using DFT methods. Calculations were performed for (i) intramolecular, (ii) lactone-lactone and (iii) water and phosphomolybdic acid catalyzed conversions. The water and acid surface catalyzed route exhibited the lowest activation barrier (156 kJ mol−1) of the three reaction pathways and overall is slightly endothermic (∆H f = 37 kJ mol−1).

Graphical Abstract

The rearrangement of 3-methyl-2-oxetanone (lactone) into methacrylic acid is catalyzed by water and phosphomolybdic acid with an activation barrier of 156 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guo X, Huang C, Chen B (2008) Korean J Chem Eng 25:675–680

    Article  CAS  Google Scholar 

  2. Cavani F, Mezzogori R, Pigamo A, Trifiro F, Etienne E (2001) Catal Today 71:97–110

    Article  CAS  Google Scholar 

  3. Sultan M, Paul S, Fournier M, Vanhove D (2004) Appl Catal A: Gen 259:141–152

    Article  CAS  Google Scholar 

  4. Deusser LM, Petzoldt JC, Gaube JW, Hibst H (1998) Ind Eng Chem Res 37:3230–3236

    Article  CAS  Google Scholar 

  5. Busca G, Cavani F, Etienne E, Finocchio E, Galli A, Selleri G, Trifiro F (1996) J Mol Catal A: Chem 114:343–359

    Article  CAS  Google Scholar 

  6. Cavani F, Mezzogori R, Pigamo A, Trifiro F (2003) Top Catal 23:119–124

    Article  CAS  Google Scholar 

  7. Misono M (2002) Top Catal 21:89–96

    Article  CAS  Google Scholar 

  8. Ai M (1982) Appl Catal 4:245–256

    Article  CAS  Google Scholar 

  9. Min J, Mizuno N (2001) Catal Today 71:89–96

    Article  CAS  Google Scholar 

  10. Hu CW, Hashimoto M, Okuhara T, Misono M (1993) J Catal 143:437–448

    Article  CAS  Google Scholar 

  11. Okuhara T, Hu C, Hashimoto M, Misono M (1994) Bull Chem Soc Jpn 67:1186–1188

    Article  CAS  Google Scholar 

  12. Filek U, Bressel A, Sulikowski B, Hunger M (2008) J Phys Chem C 112:19470–19476

    Article  CAS  Google Scholar 

  13. Baba T, Watanabe H, Ono Y (1983) J Phys Chem 87:2406–2411

    Article  CAS  Google Scholar 

  14. Li W, Oshihara K, Ueda W (1999) Appl Catal A: Gen 182:357–363

    Article  CAS  Google Scholar 

  15. Marosi L, Otero Areán C (2003) J Catal 213:235–240

    Article  CAS  Google Scholar 

  16. Zhu B, Li H, Yang W, Lin L (2004) Catal Today 93–95:229–234

    Article  Google Scholar 

  17. Li X-K, Zhao J, Ji W-J, Zhang Z-B, Chen Y, Au C-T, Han S, Hibst H (2006) J Catal 237:58–66

    Article  CAS  Google Scholar 

  18. Lin M, Desai TB, Kaiser FW, Klugherz PD (2000) Catal Today 61:223–229

    Article  CAS  Google Scholar 

  19. Holles JH, Dillon CJ, Labinger JA, Davis ME (2003) J Catal 218:42–53

    Article  CAS  Google Scholar 

  20. Ilkenhans T, Herzog B, Braun T, Schlogl R (1995) J Catal 153:275–292

    Article  CAS  Google Scholar 

  21. Ernst V, Barbaux Y, Courtine P (1987) Catal Today 1:167–180

    Article  CAS  Google Scholar 

  22. Cavani F, Comuzzi C, Dolcetti G, Etienne E, Finke RG, Selleri G, Trifirò F, Trovarelli A (1996) J Catal 160:317–321

    Article  CAS  Google Scholar 

  23. Okuhara T, Hashimoto T, Hibi T, Misono M (1985) J Catal 93:224–230

    Article  CAS  Google Scholar 

  24. Kendell S, Alston A, Brown T (2009) Chem Prod Process Model 4:5

    Google Scholar 

  25. Kendell SM, Brown TC, Burns RC (2008) Catal Today 131:526–532

    Article  CAS  Google Scholar 

  26. Guan J, Jia M, Jing S, Wang Z, Xing L, Xu H, Kan Q (2006) Catal Lett 108:125–129

    Article  CAS  Google Scholar 

  27. Inumaru K, Ono A, Kubo H, Misono M (1998) J Chem Soc, Faraday Trans 94:1765–1770

    Article  CAS  Google Scholar 

  28. Guan J, Wu S, Jia M, Huang J, Jing S, Xu H, Wang Z, Zhu W, Xing H, Wang H, Kan Q (2007) Catal Commun 8:1219–1223

    Article  CAS  Google Scholar 

  29. Paul S, LeCourtois V, Vanhove D (1997) Ind Eng Chem Res 36:3391–3399

    Article  CAS  Google Scholar 

  30. Etienne E, Cavani F, Mezzogori R, Trifirò F, Calestani G, Gengembre L, Guelton M (2003) Appl Catal A: Gen 256:275–290

    Article  CAS  Google Scholar 

  31. Mizuno N, Yahiro H (1998) J Phys Chem B 102:437–443

    Article  CAS  Google Scholar 

  32. Cavani F, Etienne E, Mezzogori R, Pigamo A, Trifiro F (2001) Catal Lett 75:99–105

    Article  CAS  Google Scholar 

  33. Min J, Mizuno N (2001) Catal Today 66:47–52

    Article  CAS  Google Scholar 

  34. Jalowiecki-Duhamel L, Monnier A, Barbaux Y, Hecquet G (1996) Catal Today 32:237–241

    Article  CAS  Google Scholar 

  35. Liu-Cai FX, Pham C, Bey F, Herve G (2002) React Kinet Catal Lett 75:305–314

    Article  CAS  Google Scholar 

  36. Cavani F, Etienne E, Favaro M, Galli A, Trifiro F, Hecquet G (1995) Catal Lett 32:215–226

    Article  CAS  Google Scholar 

  37. Li W, Ueda W (1997) Catal Lett 46:261–265

    Article  CAS  Google Scholar 

  38. Schindler GP, Ui T, Nagai K (2001) Appl Catal A: Gen 206:183–195

    Article  CAS  Google Scholar 

  39. Cavani F, Trifirò F (1999) Catal Today 51:561–580

    Article  CAS  Google Scholar 

  40. Schindler GP, Knapp C, Ui T, Nagai K (2003) Top Catal 22:117–121

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  42. Jonsson H, Mills G, Jacobsen KW (1998) Berne J, Cicotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore

    Google Scholar 

  43. Henkelman G, Jonsson H (2000) J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  44. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  45. Vedrine JC, Millet JMM, Volta JC (1996) Catal Today 32:115–123

    Article  CAS  Google Scholar 

  46. Furuta M, Sakata K, Misono M, Yoneda Y (1979) Chem Lett 8:31–34

    Article  Google Scholar 

  47. Misono M, Mizuno N, Katamura K, Kasai A, Konishi Y, Sakata K, Okuhara T, Yoneda Y (1982) Bull Chem Soc Jpn 55:400–406

    Article  CAS  Google Scholar 

  48. Misono M (1987) Catal Rev - Sci Eng 29:269–321

    Article  CAS  Google Scholar 

  49. Otake M, Onoda T (1975) Shokubai (Catalyst) 17:13

    Google Scholar 

  50. Hayakawa N, Okuhara T, Misono M, Yoneda Y (1982) Nippon Kagaku Kaishi 1982:356

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the valuable contributions of Chris Fellows. Financial assistance from the University of New England and the Australian Postgraduate Award are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane Kendell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, N.H., Kendell, S., Le Minh, C. et al. Mechanistic Investigation into the Rearrangement of Lactone into Methacrylic Acid over Phosphomolybdic Acid Catalyst. Catal Lett 136, 28–34 (2010). https://doi.org/10.1007/s10562-010-0321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0321-4

Keywords

Navigation